moving ressources
This commit is contained in:
308
RpiLedBars/res/src/pixled/rpi_dma_utils.c
Normal file
308
RpiLedBars/res/src/pixled/rpi_dma_utils.c
Normal file
@@ -0,0 +1,308 @@
|
||||
// Raspberry Pi DMA utilities; see https://iosoft.blog for details
|
||||
//
|
||||
// Copyright (c) 2020 Jeremy P Bentham
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
#include <fcntl.h>
|
||||
#include <signal.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <sys/ioctl.h>
|
||||
#include <sys/mman.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#include "rpi_dma_utils.h"
|
||||
|
||||
// If non-zero, print debug information
|
||||
#define DEBUG 0
|
||||
// If non-zero, enable PWM hardware output
|
||||
#define PWM_OUT 0
|
||||
|
||||
char *dma_regstrs[] = {"DMA CS", "CB_AD", "TI", "SRCE_AD", "DEST_AD",
|
||||
"TFR_LEN", "STRIDE", "NEXT_CB", "DEBUG", ""};
|
||||
char *gpio_mode_strs[] = {GPIO_MODE_STRS};
|
||||
|
||||
// Virtual memory pointers to acceess GPIO, DMA and PWM from user space
|
||||
MEM_MAP pwm_regs, gpio_regs, dma_regs, clk_regs;
|
||||
|
||||
// Use mmap to obtain virtual address, given physical
|
||||
void *map_periph(MEM_MAP *mp, void *phys, int size) {
|
||||
mp->phys = phys;
|
||||
mp->size = PAGE_ROUNDUP(size);
|
||||
mp->bus = (void *)((uint32_t)phys - PHYS_REG_BASE + BUS_REG_BASE);
|
||||
mp->virt = map_segment(phys, mp->size);
|
||||
return (mp->virt);
|
||||
}
|
||||
|
||||
// Allocate uncached memory, get bus & phys addresses
|
||||
void *map_uncached_mem(MEM_MAP *mp, int size) {
|
||||
void *ret;
|
||||
mp->size = PAGE_ROUNDUP(size);
|
||||
mp->fd = open_mbox();
|
||||
ret = (mp->h = alloc_vc_mem(mp->fd, mp->size, DMA_MEM_FLAGS)) > 0 &&
|
||||
(mp->bus = lock_vc_mem(mp->fd, mp->h)) != 0 &&
|
||||
(mp->virt = map_segment(BUS_PHYS_ADDR(mp->bus), mp->size)) != 0
|
||||
? mp->virt
|
||||
: 0;
|
||||
printf("VC mem handle %u, phys %p, virt %p\n", mp->h, mp->bus, mp->virt);
|
||||
return (ret);
|
||||
}
|
||||
|
||||
// Free mapped peripheral or memory
|
||||
void unmap_periph_mem(MEM_MAP *mp) {
|
||||
if (mp) {
|
||||
if (mp->fd) {
|
||||
unmap_segment(mp->virt, mp->size);
|
||||
unlock_vc_mem(mp->fd, mp->h);
|
||||
free_vc_mem(mp->fd, mp->h);
|
||||
close_mbox(mp->fd);
|
||||
} else
|
||||
unmap_segment(mp->virt, mp->size);
|
||||
}
|
||||
}
|
||||
|
||||
// ----- GPIO -----
|
||||
|
||||
// Set input or output with pullups
|
||||
void gpio_set(int pin, int mode, int pull) {
|
||||
gpio_mode(pin, mode);
|
||||
gpio_pull(pin, pull);
|
||||
}
|
||||
|
||||
// Set I/P pullup or pulldown
|
||||
void gpio_pull(int pin, int pull) {
|
||||
volatile uint32_t *reg = REG32(gpio_regs, GPIO_GPPUDCLK0) + pin / 32;
|
||||
|
||||
*REG32(gpio_regs, GPIO_GPPUD) = pull;
|
||||
usleep(2);
|
||||
*reg = pin << (pin % 32);
|
||||
usleep(2);
|
||||
*REG32(gpio_regs, GPIO_GPPUD) = 0;
|
||||
*reg = 0;
|
||||
}
|
||||
|
||||
// Set input or output
|
||||
void gpio_mode(int pin, int mode) {
|
||||
volatile uint32_t *reg = REG32(gpio_regs, GPIO_MODE0) + pin / 10, shift = (pin % 10) * 3;
|
||||
*reg = (*reg & ~(7 << shift)) | (mode << shift);
|
||||
}
|
||||
|
||||
// Set an O/P pin
|
||||
void gpio_out(int pin, int val) {
|
||||
volatile uint32_t *reg = REG32(gpio_regs, val ? GPIO_SET0 : GPIO_CLR0) + pin / 32;
|
||||
*reg = 1 << (pin % 32);
|
||||
}
|
||||
|
||||
// Get an I/P pin value
|
||||
uint8_t gpio_in(int pin) {
|
||||
volatile uint32_t *reg = REG32(gpio_regs, GPIO_LEV0) + pin / 32;
|
||||
return (((*reg) >> (pin % 32)) & 1);
|
||||
}
|
||||
|
||||
// Display the values in a GPIO mode register
|
||||
void disp_mode_vals(uint32_t mode) {
|
||||
int i;
|
||||
|
||||
for (i = 0; i < 10; i++)
|
||||
printf("%u:%-4s ", i, gpio_mode_strs[(mode >> (i * 3)) & 7]);
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
// ----- VIDEOCORE MAILBOX -----
|
||||
|
||||
// Open mailbox interface, return file descriptor
|
||||
int open_mbox(void) {
|
||||
int fd;
|
||||
|
||||
if ((fd = open("/dev/vcio", 0)) < 0)
|
||||
fail("Error: can't open VC mailbox\n");
|
||||
return (fd);
|
||||
}
|
||||
// Close mailbox interface
|
||||
void close_mbox(int fd) {
|
||||
if (fd >= 0)
|
||||
close(fd);
|
||||
}
|
||||
|
||||
// Send message to mailbox, return first response int, 0 if error
|
||||
uint32_t msg_mbox(int fd, VC_MSG *msgp) {
|
||||
uint32_t ret = 0, i;
|
||||
|
||||
for (i = msgp->dlen / 4; i <= msgp->blen / 4; i += 4)
|
||||
msgp->uints[i++] = 0;
|
||||
msgp->len = (msgp->blen + 6) * 4;
|
||||
msgp->req = 0;
|
||||
if (ioctl(fd, _IOWR(100, 0, void *), msgp) < 0)
|
||||
printf("VC IOCTL failed\n");
|
||||
else if ((msgp->req & 0x80000000) == 0)
|
||||
printf("VC IOCTL error\n");
|
||||
else if (msgp->req == 0x80000001)
|
||||
printf("VC IOCTL partial error\n");
|
||||
else
|
||||
ret = msgp->uints[0];
|
||||
#if DEBUG
|
||||
disp_vc_msg(msgp);
|
||||
#endif
|
||||
return (ret);
|
||||
}
|
||||
|
||||
// Allocate memory on PAGE_SIZE boundary, return handle
|
||||
uint32_t alloc_vc_mem(int fd, uint32_t size, VC_ALLOC_FLAGS flags) {
|
||||
VC_MSG msg = {
|
||||
.tag = 0x3000c, .blen = 12, .dlen = 12, .uints = {PAGE_ROUNDUP(size), PAGE_SIZE, flags}};
|
||||
return (msg_mbox(fd, &msg));
|
||||
}
|
||||
// Lock allocated memory, return bus address
|
||||
void *lock_vc_mem(int fd, int h) {
|
||||
VC_MSG msg = {.tag = 0x3000d, .blen = 4, .dlen = 4, .uints = {h}};
|
||||
return (h ? (void *)msg_mbox(fd, &msg) : 0);
|
||||
}
|
||||
// Unlock allocated memory
|
||||
uint32_t unlock_vc_mem(int fd, int h) {
|
||||
VC_MSG msg = {.tag = 0x3000e, .blen = 4, .dlen = 4, .uints = {h}};
|
||||
return (h ? msg_mbox(fd, &msg) : 0);
|
||||
}
|
||||
// Free memory
|
||||
uint32_t free_vc_mem(int fd, int h) {
|
||||
VC_MSG msg = {.tag = 0x3000f, .blen = 4, .dlen = 4, .uints = {h}};
|
||||
return (h ? msg_mbox(fd, &msg) : 0);
|
||||
}
|
||||
uint32_t set_vc_clock(int fd, int id, uint32_t freq) {
|
||||
VC_MSG msg1 = {.tag = 0x38001, .blen = 8, .dlen = 8, .uints = {id, 1}};
|
||||
VC_MSG msg2 = {.tag = 0x38002, .blen = 12, .dlen = 12, .uints = {id, freq, 0}};
|
||||
msg_mbox(fd, &msg1);
|
||||
disp_vc_msg(&msg1);
|
||||
msg_mbox(fd, &msg2);
|
||||
disp_vc_msg(&msg2);
|
||||
return (0);
|
||||
}
|
||||
|
||||
// Display mailbox message
|
||||
void disp_vc_msg(VC_MSG *msgp) {
|
||||
int i;
|
||||
|
||||
printf("VC msg len=%X, req=%X, tag=%X, blen=%x, dlen=%x, data ", msgp->len, msgp->req, msgp->tag,
|
||||
msgp->blen, msgp->dlen);
|
||||
for (i = 0; i < msgp->blen / 4; i++)
|
||||
printf("%08X ", msgp->uints[i]);
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
// ----- VIRTUAL MEMORY -----
|
||||
|
||||
// Get virtual memory segment for peripheral regs or physical mem
|
||||
void *map_segment(void *addr, int size) {
|
||||
int fd;
|
||||
void *mem;
|
||||
|
||||
size = PAGE_ROUNDUP(size);
|
||||
if ((fd = open("/dev/mem", O_RDWR | O_SYNC | O_CLOEXEC)) < 0)
|
||||
fail("Error: can't open /dev/mem, run using sudo\n");
|
||||
mem = mmap(0, size, PROT_WRITE | PROT_READ, MAP_SHARED, fd, (uint32_t)addr);
|
||||
close(fd);
|
||||
#if DEBUG
|
||||
printf("Map %p -> %p\n", (void *)addr, mem);
|
||||
#endif
|
||||
if (mem == MAP_FAILED)
|
||||
fail("Error: can't map memory\n");
|
||||
return (mem);
|
||||
}
|
||||
// Free mapped memory
|
||||
void unmap_segment(void *mem, int size) {
|
||||
if (mem)
|
||||
munmap(mem, PAGE_ROUNDUP(size));
|
||||
}
|
||||
|
||||
// ----- DMA -----
|
||||
|
||||
// Enable and reset DMA
|
||||
void enable_dma(int chan) {
|
||||
*REG32(dma_regs, DMA_ENABLE) |= (1 << chan);
|
||||
*REG32(dma_regs, DMA_REG(chan, DMA_CS)) = 1 << 31;
|
||||
}
|
||||
|
||||
// Start DMA, given first control block
|
||||
void start_dma(MEM_MAP *mp, int chan, DMA_CB *cbp, uint32_t csval) {
|
||||
*REG32(dma_regs, DMA_REG(chan, DMA_CONBLK_AD)) = MEM_BUS_ADDR(mp, cbp);
|
||||
*REG32(dma_regs, DMA_REG(chan, DMA_CS)) = 2; // Clear 'end' flag
|
||||
*REG32(dma_regs, DMA_REG(chan, DMA_DEBUG)) = 7; // Clear error bits
|
||||
*REG32(dma_regs, DMA_REG(chan, DMA_CS)) = 1 | csval; // Start DMA
|
||||
}
|
||||
|
||||
// Return remaining transfer length
|
||||
uint32_t dma_transfer_len(int chan) { return (*REG32(dma_regs, DMA_REG(chan, DMA_TXFR_LEN))); }
|
||||
|
||||
// Check if DMA is active
|
||||
uint32_t dma_active(int chan) { return ((*REG32(dma_regs, DMA_REG(chan, DMA_CS))) & 1); }
|
||||
|
||||
// Halt current DMA operation by resetting controller
|
||||
void stop_dma(int chan) {
|
||||
if (dma_regs.virt)
|
||||
*REG32(dma_regs, DMA_REG(chan, DMA_CS)) = 1 << 31;
|
||||
}
|
||||
|
||||
// Display DMA registers
|
||||
void disp_dma(int chan) {
|
||||
volatile uint32_t *p = REG32(dma_regs, DMA_REG(chan, DMA_CS));
|
||||
int i = 0;
|
||||
|
||||
while (dma_regstrs[i][0]) {
|
||||
printf("%-7s %08X ", dma_regstrs[i++], *p++);
|
||||
if (i % 5 == 0 || dma_regstrs[i][0] == 0)
|
||||
printf("\n");
|
||||
}
|
||||
}
|
||||
|
||||
// ----- PWM -----
|
||||
|
||||
// Initialise PWM
|
||||
void init_pwm(int freq, int range, int val) {
|
||||
stop_pwm();
|
||||
if (*REG32(pwm_regs, PWM_STA) & 0x100) {
|
||||
printf("PWM bus error\n");
|
||||
*REG32(pwm_regs, PWM_STA) = 0x100;
|
||||
}
|
||||
#if USE_VC_CLOCK_SET
|
||||
set_vc_clock(mbox_fd, PWM_CLOCK_ID, freq);
|
||||
#else
|
||||
int divi = CLOCK_HZ / freq;
|
||||
*REG32(clk_regs, CLK_PWM_CTL) = CLK_PASSWD | (1 << 5);
|
||||
while (*REG32(clk_regs, CLK_PWM_CTL) & (1 << 7))
|
||||
;
|
||||
*REG32(clk_regs, CLK_PWM_DIV) = CLK_PASSWD | (divi << 12);
|
||||
*REG32(clk_regs, CLK_PWM_CTL) = CLK_PASSWD | 6 | (1 << 4);
|
||||
while ((*REG32(clk_regs, CLK_PWM_CTL) & (1 << 7)) == 0)
|
||||
;
|
||||
#endif
|
||||
usleep(100);
|
||||
*REG32(pwm_regs, PWM_RNG1) = range;
|
||||
*REG32(pwm_regs, PWM_FIF1) = val;
|
||||
#if PWM_OUT
|
||||
gpio_mode(PWM_PIN, PWM_PIN == 12 ? GPIO_ALT0 : GPIO_ALT5);
|
||||
#endif
|
||||
}
|
||||
|
||||
// Start PWM operation
|
||||
void start_pwm(void) { *REG32(pwm_regs, PWM_CTL) = PWM_CTL_USEF1 | PWM_ENAB; }
|
||||
|
||||
// Stop PWM operation
|
||||
void stop_pwm(void) {
|
||||
if (pwm_regs.virt) {
|
||||
*REG32(pwm_regs, PWM_CTL) = 0;
|
||||
usleep(100);
|
||||
}
|
||||
}
|
||||
|
||||
// EOF
|
204
RpiLedBars/res/src/pixled/rpi_dma_utils.h
Normal file
204
RpiLedBars/res/src/pixled/rpi_dma_utils.h
Normal file
@@ -0,0 +1,204 @@
|
||||
// Raspberry Pi DMA utility definitions; see https://iosoft.blog for details
|
||||
//
|
||||
// Copyright (c) 2020 Jeremy P Bentham
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
// Location of peripheral registers in physical memory
|
||||
#define PHYS_REG_BASE PI_23_REG_BASE
|
||||
#define PI_01_REG_BASE 0x20000000 // Pi Zero or 1
|
||||
#define PI_23_REG_BASE 0x3F000000 // Pi 2 or 3
|
||||
#define PI_4_REG_BASE 0xFE000000 // Pi 4
|
||||
|
||||
#define CLOCK_HZ 250000000 // Pi 2 - 4
|
||||
//#define CLOCK_HZ 400000000 // Pi Zero
|
||||
|
||||
// Location of peripheral registers in bus memory
|
||||
#define BUS_REG_BASE 0x7E000000
|
||||
|
||||
// If non-zero, print debug information
|
||||
#define DEBUG 0
|
||||
|
||||
// If non-zero, set PWM clock using VideoCore mailbox
|
||||
#define USE_VC_CLOCK_SET 0
|
||||
|
||||
// Size of memory page
|
||||
#define PAGE_SIZE 0x1000
|
||||
// Round up to nearest page
|
||||
#define PAGE_ROUNDUP(n) ((n) % PAGE_SIZE == 0 ? (n) : ((n) + PAGE_SIZE) & ~(PAGE_SIZE - 1))
|
||||
|
||||
// Structure for mapped peripheral or memory
|
||||
typedef struct {
|
||||
int fd, // File descriptor
|
||||
h, // Memory handle
|
||||
size; // Memory size
|
||||
void *bus, // Bus address
|
||||
*virt, // Virtual address
|
||||
*phys; // Physical address
|
||||
} MEM_MAP;
|
||||
|
||||
// Get virtual 8 and 32-bit pointers to register
|
||||
#define REG8(m, x) ((volatile uint8_t *)((uint32_t)(m.virt) + (uint32_t)(x)))
|
||||
#define REG32(m, x) ((volatile uint32_t *)((uint32_t)(m.virt) + (uint32_t)(x)))
|
||||
// Get bus address of register
|
||||
#define REG_BUS_ADDR(m, x) ((uint32_t)(m.bus) + (uint32_t)(x))
|
||||
// Convert uncached memory virtual address to bus address
|
||||
#define MEM_BUS_ADDR(mp, a) ((uint32_t)a - (uint32_t)mp->virt + (uint32_t)mp->bus)
|
||||
// Convert bus address to physical address (for mmap)
|
||||
#define BUS_PHYS_ADDR(a) ((void *)((uint32_t)(a) & ~0xC0000000))
|
||||
|
||||
// GPIO register definitions
|
||||
#define GPIO_BASE (PHYS_REG_BASE + 0x200000)
|
||||
#define GPIO_MODE0 0x00
|
||||
#define GPIO_SET0 0x1c
|
||||
#define GPIO_CLR0 0x28
|
||||
#define GPIO_LEV0 0x34
|
||||
#define GPIO_GPPUD 0x94
|
||||
#define GPIO_GPPUDCLK0 0x98
|
||||
// GPIO I/O definitions
|
||||
#define GPIO_IN 0
|
||||
#define GPIO_OUT 1
|
||||
#define GPIO_ALT0 4
|
||||
#define GPIO_ALT1 5
|
||||
#define GPIO_ALT2 6
|
||||
#define GPIO_ALT3 7
|
||||
#define GPIO_ALT4 3
|
||||
#define GPIO_ALT5 2
|
||||
#define GPIO_MODE_STRS "IN", "OUT", "ALT5", "ALT4", "ALT0", "ALT1", "ALT2", "ALT3"
|
||||
#define GPIO_NOPULL 0
|
||||
#define GPIO_PULLDN 1
|
||||
#define GPIO_PULLUP 2
|
||||
|
||||
// Videocore mailbox memory allocation flags, see:
|
||||
// https://github.com/raspberrypi/firmware/wiki/Mailbox-property-interface
|
||||
typedef enum {
|
||||
MEM_FLAG_DISCARDABLE = 1 << 0, // can be resized to 0 at any time. Use for cached data
|
||||
MEM_FLAG_NORMAL = 0 << 2, // normal allocating alias. Don't use from ARM
|
||||
MEM_FLAG_DIRECT = 1 << 2, // 0xC alias uncached
|
||||
MEM_FLAG_COHERENT = 2 << 2, // 0x8 alias. Non-allocating in L2 but coherent
|
||||
MEM_FLAG_ZERO = 1 << 4, // initialise buffer to all zeros
|
||||
MEM_FLAG_NO_INIT = 1 << 5, // don't initialise (default is initialise to all ones)
|
||||
MEM_FLAG_HINT_PERMALOCK = 1 << 6, // Likely to be locked for long periods of time
|
||||
MEM_FLAG_L1_NONALLOCATING = (MEM_FLAG_DIRECT | MEM_FLAG_COHERENT) // Allocating in L2
|
||||
} VC_ALLOC_FLAGS;
|
||||
// VC flags for unchached DMA memory
|
||||
#define DMA_MEM_FLAGS (MEM_FLAG_DIRECT | MEM_FLAG_ZERO)
|
||||
|
||||
// Mailbox command/response structure
|
||||
typedef struct {
|
||||
uint32_t len, // Overall length (bytes)
|
||||
req, // Zero for request, 1<<31 for response
|
||||
tag, // Command number
|
||||
blen, // Buffer length (bytes)
|
||||
dlen; // Data length (bytes)
|
||||
uint32_t uints[32 - 5]; // Data (108 bytes maximum)
|
||||
} VC_MSG __attribute__((aligned(16)));
|
||||
|
||||
// DMA channels and data requests
|
||||
#define DMA_CHAN_A 10
|
||||
#define DMA_CHAN_B 11
|
||||
#define DMA_PWM_DREQ 5
|
||||
#define DMA_SPI_TX_DREQ 6
|
||||
#define DMA_SPI_RX_DREQ 7
|
||||
#define DMA_BASE (PHYS_REG_BASE + 0x007000)
|
||||
// DMA register addresses offset by 0x100 * chan_num
|
||||
#define DMA_CS 0x00
|
||||
#define DMA_CONBLK_AD 0x04
|
||||
#define DMA_TI 0x08
|
||||
#define DMA_SRCE_AD 0x0c
|
||||
#define DMA_DEST_AD 0x10
|
||||
#define DMA_TXFR_LEN 0x14
|
||||
#define DMA_STRIDE 0x18
|
||||
#define DMA_NEXTCONBK 0x1c
|
||||
#define DMA_DEBUG 0x20
|
||||
#define DMA_REG(ch, r) ((r) == DMA_ENABLE ? DMA_ENABLE : (ch)*0x100 + (r))
|
||||
#define DMA_ENABLE 0xff0
|
||||
// DMA register values
|
||||
#define DMA_WAIT_RESP (1 << 3)
|
||||
#define DMA_CB_DEST_INC (1 << 4)
|
||||
#define DMA_DEST_DREQ (1 << 6)
|
||||
#define DMA_CB_SRCE_INC (1 << 8)
|
||||
#define DMA_SRCE_DREQ (1 << 10)
|
||||
#define DMA_PRIORITY(n) ((n) << 16)
|
||||
|
||||
// DMA control block (must be 32-byte aligned)
|
||||
typedef struct {
|
||||
uint32_t ti, // Transfer info
|
||||
srce_ad, // Source address
|
||||
dest_ad, // Destination address
|
||||
tfr_len, // Transfer length
|
||||
stride, // Transfer stride
|
||||
next_cb, // Next control block
|
||||
debug, // Debug register, zero in control block
|
||||
unused;
|
||||
} DMA_CB __attribute__((aligned(32)));
|
||||
|
||||
// PWM controller registers
|
||||
#define PWM_BASE (PHYS_REG_BASE + 0x20C000)
|
||||
#define PWM_CTL 0x00 // Control
|
||||
#define PWM_STA 0x04 // Status
|
||||
#define PWM_DMAC 0x08 // DMA control
|
||||
#define PWM_RNG1 0x10 // Channel 1 range
|
||||
#define PWM_DAT1 0x14 // Channel 1 data
|
||||
#define PWM_FIF1 0x18 // Channel 1 fifo
|
||||
#define PWM_RNG2 0x20 // Channel 2 range
|
||||
#define PWM_DAT2 0x24 // Channel 2 data
|
||||
// PWM register values
|
||||
#define PWM_CTL_RPTL1 (1 << 2) // Chan 1: repeat last data when FIFO empty
|
||||
#define PWM_CTL_USEF1 (1 << 5) // Chan 1: use FIFO
|
||||
#define PWM_DMAC_ENAB (1 << 31) // Start PWM DMA
|
||||
#define PWM_ENAB 1 // Enable PWM
|
||||
#define PWM_PIN 12 // GPIO pin for PWM output, 12 or 18
|
||||
|
||||
// Clock registers and values
|
||||
#define CLK_BASE (PHYS_REG_BASE + 0x101000)
|
||||
#define CLK_PWM_CTL 0xa0
|
||||
#define CLK_PWM_DIV 0xa4
|
||||
#define CLK_PASSWD 0x5a000000
|
||||
#define PWM_CLOCK_ID 0xa
|
||||
|
||||
void fail(char *s);
|
||||
void *map_periph(MEM_MAP *mp, void *phys, int size);
|
||||
void *map_uncached_mem(MEM_MAP *mp, int size);
|
||||
void unmap_periph_mem(MEM_MAP *mp);
|
||||
void gpio_set(int pin, int mode, int pull);
|
||||
void gpio_pull(int pin, int pull);
|
||||
void gpio_mode(int pin, int mode);
|
||||
void gpio_out(int pin, int val);
|
||||
uint8_t gpio_in(int pin);
|
||||
void disp_mode_vals(uint32_t mode);
|
||||
int open_mbox(void);
|
||||
void close_mbox(int fd);
|
||||
uint32_t msg_mbox(int fd, VC_MSG *msgp);
|
||||
void *map_segment(void *addr, int size);
|
||||
void unmap_segment(void *addr, int size);
|
||||
uint32_t alloc_vc_mem(int fd, uint32_t size, VC_ALLOC_FLAGS flags);
|
||||
void *lock_vc_mem(int fd, int h);
|
||||
uint32_t unlock_vc_mem(int fd, int h);
|
||||
uint32_t free_vc_mem(int fd, int h);
|
||||
uint32_t set_vc_clock(int fd, int id, uint32_t freq);
|
||||
void disp_vc_msg(VC_MSG *msgp);
|
||||
void enable_dma(int chan);
|
||||
void start_dma(MEM_MAP *mp, int chan, DMA_CB *cbp, uint32_t csval);
|
||||
uint32_t dma_transfer_len(int chan);
|
||||
uint32_t dma_active(int chan);
|
||||
void stop_dma(int chan);
|
||||
void disp_dma(int chan);
|
||||
void init_pwm(int freq, int range, int val);
|
||||
void start_pwm(void);
|
||||
void stop_pwm(void);
|
||||
|
||||
// EOF
|
341
RpiLedBars/res/src/pixled/rpi_pixleds.c
Normal file
341
RpiLedBars/res/src/pixled/rpi_pixleds.c
Normal file
@@ -0,0 +1,341 @@
|
||||
// Raspberry Pi WS2812 LED driver using SMI
|
||||
// For detailed description, see https://iosoft.blog
|
||||
//
|
||||
// Copyright (c) 2020 Jeremy P Bentham
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// v0.01 JPB 16/7/20 Adapted from rpi_smi_adc_test v0.06
|
||||
// v0.02 JPB 15/9/20 Addded RGB to GRB conversion
|
||||
// v0.03 JPB 15/9/20 Added red-green flashing
|
||||
// v0.04 JPB 16/9/20 Added test mode
|
||||
// v0.05 JPB 19/9/20 Changed test mode colours
|
||||
// v0.06 JPB 20/9/20 Outlined command-line data input
|
||||
// v0.07 JPB 25/9/20 Command-line data input if not in test mode
|
||||
// v0.08 JPB 26/9/20 Changed from 4 to 3 pulses per LED bit
|
||||
// Added 4-bit zero preamble
|
||||
// Added raw Tx data test
|
||||
// v0.09 JPB 27/9/20 Added 16-channel option
|
||||
// v0.10 JPB 28/9/20 Corrected Pi Zero caching problem
|
||||
// v0.11 JPB 29/9/20 Added enable_dma before transfer (in case still active)
|
||||
// Corrected DMA nsamp value (was byte count)
|
||||
|
||||
#include "rpi_pixleds.h"
|
||||
|
||||
#include <ctype.h>
|
||||
#include <signal.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#include "rpi_smi_defs.h"
|
||||
|
||||
// Structures for mapped I/O devices, and non-volatile memory
|
||||
extern MEM_MAP gpio_regs, dma_regs;
|
||||
MEM_MAP vc_mem, clk_regs, smi_regs;
|
||||
|
||||
// Pointers to SMI registers
|
||||
volatile SMI_CS_REG *smi_cs;
|
||||
volatile SMI_L_REG *smi_l;
|
||||
volatile SMI_A_REG *smi_a;
|
||||
volatile SMI_D_REG *smi_d;
|
||||
volatile SMI_DMC_REG *smi_dmc;
|
||||
volatile SMI_DSR_REG *smi_dsr;
|
||||
volatile SMI_DSW_REG *smi_dsw;
|
||||
volatile SMI_DCS_REG *smi_dcs;
|
||||
volatile SMI_DCA_REG *smi_dca;
|
||||
volatile SMI_DCD_REG *smi_dcd;
|
||||
|
||||
// RGB values for test mode (1 value for each of 16 channels)
|
||||
// uint32_t on_rgbs[] = {0xef0000, 0x00ef00, 0x0000ef, 0xefef00, 0xef00ef, 0x00efef, 0xefefef};
|
||||
// uint32_t off_rgbs = 0x000000;
|
||||
|
||||
// TXDATA_T *txdata; // Pointer to uncached Tx data buffer
|
||||
// TXDATA_T tx_buffer[TX_BUFF_LEN(CHAN_MAXLEDS)]; // Tx buffer for assembling data
|
||||
// int testmode, chan_ledcount = 1; // Command-line parameters
|
||||
int rgb_data[CHAN_MAXLEDS][LED_NCHANS]; // RGB data
|
||||
int chan_num;
|
||||
|
||||
// Current channel for data I/P
|
||||
|
||||
// int main(int argc, char *argv[]) {
|
||||
// // setup
|
||||
// int args = 0, n;
|
||||
|
||||
// while (argc > ++args) // Process command-line args
|
||||
// {
|
||||
// if (argv[args][0] == '-') {
|
||||
// switch (toupper(argv[args][1])) {
|
||||
// case 'N': // -N: number of LEDs per channel
|
||||
// if (args >= argc - 1)
|
||||
// fprintf(stderr, "Error: no numeric value\n");
|
||||
// else
|
||||
// chan_ledcount = atoi(argv[++args]);
|
||||
// break;
|
||||
// case 'T': // -T: test mode
|
||||
// testmode = 1;
|
||||
// break;
|
||||
// default: // Otherwise error
|
||||
// printf("Unrecognised option '%c'\n", argv[args][1]);
|
||||
// printf("Options:\n"
|
||||
// " -n num number of LEDs per channel\n"
|
||||
// " -t Test mode (flash LEDs)\n");
|
||||
// return (1);
|
||||
// }
|
||||
// } else if (chan_num < LED_NCHANS && hexdig(argv[args][0]) >= 0 &&
|
||||
// (n = str_rgb(argv[args], rgb_data, chan_num)) > 0) {
|
||||
// chan_ledcount = n > chan_ledcount ? n : chan_ledcount;
|
||||
// chan_num++;
|
||||
// }
|
||||
// }
|
||||
// signal(SIGINT, terminate_smi);
|
||||
// map_devices();
|
||||
// init_smi(LED_NCHANS > 8 ? SMI_16_BITS : SMI_8_BITS, SMI_TIMING);
|
||||
// map_uncached_mem(&vc_mem, VC_MEM_SIZE);
|
||||
|
||||
// setup_smi_dma(&vc_mem, TX_BUFF_LEN(chan_ledcount));
|
||||
// printf("%s %u LED%s per channel, %u channels\n", testmode ? "Testing" : "Setting",
|
||||
// chan_ledcount,
|
||||
// chan_ledcount == 1 ? "" : "s", LED_NCHANS);
|
||||
|
||||
// for (size_t colorIndex = 0; colorIndex < 3; ++colorIndex) {
|
||||
// for (size_t i = 0; i < chan_ledcount; ++i) {
|
||||
// set_color(on_rgbs[colorIndex], &tx_buffer[LED_TX_OSET(i)]);
|
||||
// }
|
||||
|
||||
// #if LED_NCHANS <= 8
|
||||
// swap_bytes(tx_buffer, TX_BUFF_SIZE(chan_ledcount));
|
||||
// #endif
|
||||
|
||||
// memcpy(txdata, tx_buffer, TX_BUFF_SIZE(chan_ledcount));
|
||||
// start_smi(&vc_mem);
|
||||
// usleep(CHASE_MSEC * 1000);
|
||||
// sleep(1);
|
||||
// }
|
||||
|
||||
// artnet_init();
|
||||
|
||||
// // loops
|
||||
// if (testmode) {
|
||||
// while (1) {
|
||||
// test_leds();
|
||||
// sleep(3);
|
||||
// }
|
||||
// } else {
|
||||
// while (1) {
|
||||
// artDmx_t *artDmx;
|
||||
// if (artnet_read(&artDmx) == OpDmx) {
|
||||
// uint16_t dmxLength = (artDmx->lengthHi << 8) | artDmx->lengthLo;
|
||||
// unsigned int ledCountInFrame = dmxLength / 3;
|
||||
// uint16_t maxBound = ledCountInFrame < chan_ledcount ? ledCountInFrame :
|
||||
// chan_ledcount; unsigned int universe = artDmx->subUni & (LED_NCHANS - 1); for (size_t
|
||||
// i = 0; i < maxBound; ++i) {
|
||||
// uint8_t *rgb = artDmx->data + (i * 3);
|
||||
// rgb_data[i][universe] = (rgb[0] << 16) | (rgb[1] << 8) | rgb[2];
|
||||
// rgb_txdata(rgb_data[i], &tx_buffer[LED_TX_OSET(i)]);
|
||||
// }
|
||||
|
||||
// #if LED_NCHANS <= 8
|
||||
// swap_bytes(tx_buffer, TX_BUFF_SIZE(chan_ledcount));
|
||||
// #endif
|
||||
|
||||
// memcpy(txdata, tx_buffer, TX_BUFF_SIZE(chan_ledcount));
|
||||
// // enable_dma(DMA_CHAN);
|
||||
// start_smi(&vc_mem);
|
||||
// // usleep(10);
|
||||
// // while (dma_active(DMA_CHAN))
|
||||
// // usleep(10);
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// terminate_smi(0);
|
||||
// }
|
||||
|
||||
// Convert RGB text string into integer data, for given channel
|
||||
// Return number of data points for this channel
|
||||
int str_rgb(char *s, int rgbs[][LED_NCHANS], int chan) {
|
||||
int i = 0;
|
||||
char *p;
|
||||
|
||||
while (chan < LED_NCHANS && i < CHAN_MAXLEDS && hexdig(*s) >= 0) {
|
||||
rgbs[i++][chan] = strtoul(s, &p, 16);
|
||||
s = *p ? p + 1 : p;
|
||||
}
|
||||
return (i);
|
||||
}
|
||||
|
||||
// Set Tx data for 8 or 16 chans, 1 LED per chan, given 1 RGB val per chan
|
||||
// Logic 1 is 0.8us high, 0.4 us low, logic 0 is 0.4us high, 0.8us low
|
||||
void set_color(uint32_t rgb, TXDATA_T *txd) {
|
||||
int msk;
|
||||
|
||||
// For each bit of the 24-bit RGB values..
|
||||
for (size_t n = 0; n < LED_NBITS; n++) {
|
||||
// Mask to convert RGB to GRB, M.S bit first
|
||||
msk = n == 0 ? 0x800000 : n == 8 ? 0x8000 : n == 16 ? 0x80 : msk >> 1;
|
||||
// 1st byte or word is a high pulse on all lines
|
||||
txd[0] = (TXDATA_T)0xffff;
|
||||
// 2nd has high or low bits from data
|
||||
// 3rd is a low pulse
|
||||
txd[1] = txd[2] = 0;
|
||||
if (rgb & msk) {
|
||||
txd[1] = (TXDATA_T)0xffff;
|
||||
}
|
||||
txd += BIT_NPULSES;
|
||||
}
|
||||
}
|
||||
|
||||
// Set Tx data for 8 or 16 chans, 1 LED per chan, given 1 RGB val per chan
|
||||
// Logic 1 is 0.8us high, 0.4 us low, logic 0 is 0.4us high, 0.8us low
|
||||
void rgb_txdata(int *rgbs, TXDATA_T *txd) {
|
||||
int i, n, msk;
|
||||
|
||||
// For each bit of the 24-bit RGB values..
|
||||
for (n = 0; n < LED_NBITS; n++) {
|
||||
// Mask to convert RGB to GRB, M.S bit first
|
||||
msk = n == 0 ? 0x800000 : n == 8 ? 0x8000 : n == 16 ? 0x80 : msk >> 1;
|
||||
// 1st byte or word is a high pulse on all lines
|
||||
txd[0] = (TXDATA_T)0xffff;
|
||||
// 2nd has high or low bits from data
|
||||
// 3rd is a low pulse
|
||||
txd[1] = txd[2] = 0;
|
||||
for (i = 0; i < LED_NCHANS; i++) {
|
||||
if (rgbs[i] & msk)
|
||||
txd[1] |= (1 << i);
|
||||
}
|
||||
txd += BIT_NPULSES;
|
||||
}
|
||||
}
|
||||
|
||||
// Swap adjacent bytes in transmit data
|
||||
void swap_bytes(void *data, int len) {
|
||||
uint16_t *wp = (uint16_t *)data;
|
||||
|
||||
len = (len + 1) / 2;
|
||||
while (len-- > 0) {
|
||||
*wp = __builtin_bswap16(*wp);
|
||||
wp++;
|
||||
}
|
||||
}
|
||||
|
||||
// Return hex digit value, -ve if not hex
|
||||
int hexdig(char c) {
|
||||
c = toupper(c);
|
||||
return ((c >= '0' && c <= '9') ? c - '0' : (c >= 'A' && c <= 'F') ? c - 'A' + 10 : -1);
|
||||
}
|
||||
|
||||
// Map GPIO, DMA and SMI registers into virtual mem (user space)
|
||||
// If any of these fail, program will be terminate_smid
|
||||
void map_devices(void) {
|
||||
map_periph(&gpio_regs, (void *)GPIO_BASE, PAGE_SIZE);
|
||||
map_periph(&dma_regs, (void *)DMA_BASE, PAGE_SIZE);
|
||||
map_periph(&clk_regs, (void *)CLK_BASE, PAGE_SIZE);
|
||||
map_periph(&smi_regs, (void *)SMI_BASE, PAGE_SIZE);
|
||||
}
|
||||
|
||||
// Catastrophic failure in initial setup
|
||||
void fail(char *s) {
|
||||
printf(s);
|
||||
terminate_smi(0);
|
||||
}
|
||||
|
||||
// Free memory segments and exit
|
||||
void terminate_smi(int sig) {
|
||||
int i;
|
||||
printf("Closing\n");
|
||||
if (gpio_regs.virt) {
|
||||
for (i = 0; i < LED_NCHANS; i++)
|
||||
gpio_mode(LED_D0_PIN + i, GPIO_IN);
|
||||
}
|
||||
if (smi_regs.virt)
|
||||
*REG32(smi_regs, SMI_CS) = 0;
|
||||
stop_dma(DMA_CHAN);
|
||||
unmap_periph_mem(&vc_mem);
|
||||
unmap_periph_mem(&smi_regs);
|
||||
unmap_periph_mem(&dma_regs);
|
||||
unmap_periph_mem(&gpio_regs);
|
||||
exit(0);
|
||||
}
|
||||
|
||||
// Initialise SMI, given data width, time step, and setup/hold/strobe counts
|
||||
// Step value is in nanoseconds: even numbers, 2 to 30
|
||||
void init_smi(int ledChan, int ns, int setup, int strobe, int hold) {
|
||||
int width = ledChan > 8 ? SMI_16_BITS : SMI_8_BITS;
|
||||
int i, divi = ns / 2;
|
||||
|
||||
smi_cs = (SMI_CS_REG *)REG32(smi_regs, SMI_CS);
|
||||
smi_l = (SMI_L_REG *)REG32(smi_regs, SMI_L);
|
||||
smi_a = (SMI_A_REG *)REG32(smi_regs, SMI_A);
|
||||
smi_d = (SMI_D_REG *)REG32(smi_regs, SMI_D);
|
||||
smi_dmc = (SMI_DMC_REG *)REG32(smi_regs, SMI_DMC);
|
||||
smi_dsr = (SMI_DSR_REG *)REG32(smi_regs, SMI_DSR0);
|
||||
smi_dsw = (SMI_DSW_REG *)REG32(smi_regs, SMI_DSW0);
|
||||
smi_dcs = (SMI_DCS_REG *)REG32(smi_regs, SMI_DCS);
|
||||
smi_dca = (SMI_DCA_REG *)REG32(smi_regs, SMI_DCA);
|
||||
smi_dcd = (SMI_DCD_REG *)REG32(smi_regs, SMI_DCD);
|
||||
smi_cs->value = smi_l->value = smi_a->value = 0;
|
||||
smi_dsr->value = smi_dsw->value = smi_dcs->value = smi_dca->value = 0;
|
||||
if (*REG32(clk_regs, CLK_SMI_DIV) != divi << 12) {
|
||||
*REG32(clk_regs, CLK_SMI_CTL) = CLK_PASSWD | (1 << 5);
|
||||
usleep(10);
|
||||
while (*REG32(clk_regs, CLK_SMI_CTL) & (1 << 7))
|
||||
;
|
||||
usleep(10);
|
||||
*REG32(clk_regs, CLK_SMI_DIV) = CLK_PASSWD | (divi << 12);
|
||||
usleep(10);
|
||||
*REG32(clk_regs, CLK_SMI_CTL) = CLK_PASSWD | 6 | (1 << 4);
|
||||
usleep(10);
|
||||
while ((*REG32(clk_regs, CLK_SMI_CTL) & (1 << 7)) == 0)
|
||||
;
|
||||
usleep(100);
|
||||
}
|
||||
if (smi_cs->seterr)
|
||||
smi_cs->seterr = 1;
|
||||
smi_dsr->rsetup = smi_dsw->wsetup = setup;
|
||||
smi_dsr->rstrobe = smi_dsw->wstrobe = strobe;
|
||||
smi_dsr->rhold = smi_dsw->whold = hold;
|
||||
smi_dmc->panicr = smi_dmc->panicw = 8;
|
||||
smi_dmc->reqr = smi_dmc->reqw = REQUEST_THRESH;
|
||||
smi_dsr->rwidth = smi_dsw->wwidth = width;
|
||||
for (i = 0; i < LED_NCHANS; i++)
|
||||
gpio_mode(LED_D0_PIN + i, GPIO_ALT1);
|
||||
}
|
||||
|
||||
// Set up SMI transfers using DMA
|
||||
void setup_smi_dma(MEM_MAP *mp, int nsamp, TXDATA_T **txdata) {
|
||||
DMA_CB *cbs = mp->virt;
|
||||
|
||||
*txdata = (TXDATA_T *)(cbs + 1);
|
||||
smi_dmc->dmaen = 1;
|
||||
smi_cs->enable = 1;
|
||||
smi_cs->clear = 1;
|
||||
smi_cs->pxldat = 1;
|
||||
smi_l->len = nsamp * sizeof(TXDATA_T);
|
||||
smi_cs->write = 1;
|
||||
enable_dma(DMA_CHAN);
|
||||
cbs[0].ti = DMA_DEST_DREQ | (DMA_SMI_DREQ << 16) | DMA_CB_SRCE_INC | DMA_WAIT_RESP;
|
||||
cbs[0].tfr_len = nsamp;
|
||||
cbs[0].srce_ad = MEM_BUS_ADDR(mp, *txdata);
|
||||
cbs[0].dest_ad = REG_BUS_ADDR(smi_regs, SMI_D);
|
||||
}
|
||||
|
||||
// Start SMI DMA transfers
|
||||
void start_smi(MEM_MAP *mp) {
|
||||
DMA_CB *cbs = mp->virt;
|
||||
|
||||
start_dma(mp, DMA_CHAN, &cbs[0], 0);
|
||||
smi_cs->start = 1;
|
||||
}
|
||||
|
||||
// EOF
|
57
RpiLedBars/res/src/pixled/rpi_pixleds.h
Normal file
57
RpiLedBars/res/src/pixled/rpi_pixleds.h
Normal file
@@ -0,0 +1,57 @@
|
||||
#if !defined(__RPI_PIXLEDS_H__)
|
||||
#define __RPI_PIXLEDS_H__
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include "rpi_dma_utils.h"
|
||||
|
||||
#if PHYS_REG_BASE == PI_4_REG_BASE // Timings for RPi v4 (1.5 GHz)
|
||||
#define SMI_TIMING 10, 15, 30, 15 // 400 ns cycle time
|
||||
#else // Timings for RPi v0-3 (1 GHz)
|
||||
#define SMI_TIMING 10, 10, 20, 10 // 400 ns cycle time
|
||||
#endif
|
||||
|
||||
#define TX_TEST 0 // If non-zero, use dummy Tx data
|
||||
#define LED_D0_PIN 8 // GPIO pin for D0 output
|
||||
#define LED_NCHANS 8 // Number of LED channels (8 or 16)
|
||||
#define LED_NBITS 24 // Number of data bits per LED
|
||||
#define LED_PREBITS 4 // Number of zero bits before LED data
|
||||
#define LED_POSTBITS 4 // Number of zero bits after LED data
|
||||
#define BIT_NPULSES 3 // Number of O/P pulses per LED bit
|
||||
#define CHAN_MAXLEDS 6 * 60 // Maximum number of LEDs per channel
|
||||
#define CHASE_MSEC 20 // Delay time for chaser light test
|
||||
#define REQUEST_THRESH 2 // DMA request threshold
|
||||
#define DMA_CHAN 10 // DMA channel to use
|
||||
|
||||
// Length of data for 1 row (1 LED on each channel)
|
||||
#define LED_DLEN (LED_NBITS * BIT_NPULSES)
|
||||
|
||||
// Transmit data type, 8 or 16 bits
|
||||
#if LED_NCHANS > 8
|
||||
#define TXDATA_T uint16_t
|
||||
#else
|
||||
#define TXDATA_T uint8_t
|
||||
#endif
|
||||
|
||||
// Ofset into Tx data buffer, given LED number in chan
|
||||
#define LED_TX_OSET(n) (LED_PREBITS + (LED_DLEN * (n)))
|
||||
|
||||
// Size of data buffers & NV memory, given number of LEDs per chan
|
||||
#define TX_BUFF_LEN(n) (LED_TX_OSET(n) + LED_POSTBITS)
|
||||
#define TX_BUFF_SIZE(n) (TX_BUFF_LEN(n) * sizeof(TXDATA_T))
|
||||
#define VC_MEM_SIZE (PAGE_SIZE + TX_BUFF_SIZE(CHAN_MAXLEDS))
|
||||
|
||||
void test_leds();
|
||||
int str_rgb(char *s, int rgbs[][LED_NCHANS], int chan);
|
||||
void set_color(uint32_t rgb, TXDATA_T *txd);
|
||||
void rgb_txdata(int *rgbs, TXDATA_T *txd);
|
||||
void swap_bytes(void *data, int len);
|
||||
int hexdig(char c);
|
||||
void map_devices(void);
|
||||
void fail(char *s);
|
||||
void terminate_smi(int sig);
|
||||
void init_smi(int ledChan, int ns, int setup, int hold, int strobe);
|
||||
void setup_smi_dma(MEM_MAP *mp, int nsamp, TXDATA_T **txdata);
|
||||
void start_smi(MEM_MAP *mp);
|
||||
|
||||
#endif // __RPI_PIXLEDS_H__
|
112
RpiLedBars/res/src/pixled/rpi_smi_defs.h
Normal file
112
RpiLedBars/res/src/pixled/rpi_smi_defs.h
Normal file
@@ -0,0 +1,112 @@
|
||||
// Secondary Memory Interface definitions for Raspberry Pi
|
||||
//
|
||||
// v0.01 JPB 12/7/20 Adapted from rpi_smi_test v0.19
|
||||
|
||||
// Register definitions
|
||||
#define SMI_BASE (PHYS_REG_BASE + 0x600000)
|
||||
#define SMI_CS 0x00 // Control & status
|
||||
#define SMI_L 0x04 // Transfer length
|
||||
#define SMI_A 0x08 // Address
|
||||
#define SMI_D 0x0c // Data
|
||||
#define SMI_DSR0 0x10 // Read settings device 0
|
||||
#define SMI_DSW0 0x14 // Write settings device 0
|
||||
#define SMI_DSR1 0x18 // Read settings device 1
|
||||
#define SMI_DSW1 0x1c // Write settings device 1
|
||||
#define SMI_DSR2 0x20 // Read settings device 2
|
||||
#define SMI_DSW2 0x24 // Write settings device 2
|
||||
#define SMI_DSR3 0x28 // Read settings device 3
|
||||
#define SMI_DSW3 0x2c // Write settings device 3
|
||||
#define SMI_DMC 0x30 // DMA control
|
||||
#define SMI_DCS 0x34 // Direct control/status
|
||||
#define SMI_DCA 0x38 // Direct address
|
||||
#define SMI_DCD 0x3c // Direct data
|
||||
#define SMI_FD 0x40 // FIFO debug
|
||||
#define SMI_REGLEN (SMI_FD * 4)
|
||||
|
||||
// Data widths
|
||||
#define SMI_8_BITS 0
|
||||
#define SMI_16_BITS 1
|
||||
#define SMI_18_BITS 2
|
||||
#define SMI_9_BITS 3
|
||||
|
||||
// Union of 32-bit value with register bitfields
|
||||
#define REG_DEF(name, fields) \
|
||||
typedef union { \
|
||||
struct { \
|
||||
volatile uint32_t fields; \
|
||||
}; \
|
||||
volatile uint32_t value; \
|
||||
} name
|
||||
|
||||
// Control and status register
|
||||
#define SMI_CS_FIELDS \
|
||||
enable: \
|
||||
1, done : 1, active : 1, start : 1, clear : 1, write : 1, _x1 : 2, teen : 1, intd : 1, intt : 1, \
|
||||
intr : 1, pvmode : 1, seterr : 1, pxldat : 1, edreq : 1, _x2 : 8, _x3 : 1, aferr : 1, \
|
||||
txw : 1, rxr : 1, txd : 1, rxd : 1, txe : 1, rxf : 1
|
||||
REG_DEF(SMI_CS_REG, SMI_CS_FIELDS);
|
||||
|
||||
// Data length register
|
||||
#define SMI_L_FIELDS \
|
||||
len: \
|
||||
32
|
||||
REG_DEF(SMI_L_REG, SMI_L_FIELDS);
|
||||
|
||||
// Address & device number
|
||||
#define SMI_A_FIELDS \
|
||||
addr: \
|
||||
6, _x1 : 2, dev : 2
|
||||
REG_DEF(SMI_A_REG, SMI_A_FIELDS);
|
||||
|
||||
// Data FIFO
|
||||
#define SMI_D_FIELDS \
|
||||
data: \
|
||||
32
|
||||
REG_DEF(SMI_D_REG, SMI_D_FIELDS);
|
||||
|
||||
// DMA control register
|
||||
#define SMI_DMC_FIELDS \
|
||||
reqw: \
|
||||
6, reqr : 6, panicw : 6, panicr : 6, dmap : 1, _x1 : 3, dmaen : 1
|
||||
REG_DEF(SMI_DMC_REG, SMI_DMC_FIELDS);
|
||||
|
||||
// Device settings: read (1 of 4)
|
||||
#define SMI_DSR_FIELDS \
|
||||
rstrobe: \
|
||||
7, rdreq : 1, rpace : 7, rpaceall : 1, rhold : 6, fsetup : 1, mode68 : 1, rsetup : 6, rwidth : 2
|
||||
REG_DEF(SMI_DSR_REG, SMI_DSR_FIELDS);
|
||||
|
||||
// Device settings: write (1 of 4)
|
||||
#define SMI_DSW_FIELDS \
|
||||
wstrobe: \
|
||||
7, wdreq : 1, wpace : 7, wpaceall : 1, whold : 6, wswap : 1, wformat : 1, wsetup : 6, wwidth : 2
|
||||
REG_DEF(SMI_DSW_REG, SMI_DSW_FIELDS);
|
||||
|
||||
// Direct control register
|
||||
#define SMI_DCS_FIELDS \
|
||||
enable: \
|
||||
1, start : 1, done : 1, write : 1
|
||||
REG_DEF(SMI_DCS_REG, SMI_DCS_FIELDS);
|
||||
|
||||
// Direct control address & device number
|
||||
#define SMI_DCA_FIELDS \
|
||||
addr: \
|
||||
6, _x1 : 2, dev : 2
|
||||
REG_DEF(SMI_DCA_REG, SMI_DCA_FIELDS);
|
||||
|
||||
// Direct control data
|
||||
#define SMI_DCD_FIELDS \
|
||||
data: \
|
||||
32
|
||||
REG_DEF(SMI_DCD_REG, SMI_DCD_FIELDS);
|
||||
|
||||
// Debug register
|
||||
#define SMI_FLVL_FIELDS \
|
||||
fcnt: \
|
||||
6, _x1 : 2, flvl : 6
|
||||
REG_DEF(SMI_FLVL_REG, SMI_FLVL_FIELDS);
|
||||
|
||||
#define CLK_SMI_CTL 0xb0
|
||||
#define CLK_SMI_DIV 0xb4
|
||||
|
||||
// EOF
|
Reference in New Issue
Block a user