init main app code

This commit is contained in:
Tropicananass 2021-07-24 00:09:43 +01:00
parent eaf976d5a7
commit 76078b0530
20 changed files with 1518 additions and 159 deletions

View File

@ -1,6 +1,6 @@
CC=gcc CC=gcc
CFLAGS=-Wall -g #-DDEBUG CFLAGS=-Wall -g -D_DEBUG
LDFLAGS=#-lpthread LDFLAGS=-lwiringPi #-lpthread
SRCDIR=src SRCDIR=src
OBJDIR=obj OBJDIR=obj
BINDIR=bin BINDIR=bin

View File

@ -0,0 +1,315 @@
/*
Copyright (c) Charles Yarnold charlesyarnold@gmail.com 2015
Copyright (c) 2016-2020 Stephan Ruloff
https://github.com/rstephan/ArtnetnodeWifi
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, under version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <ArtnetnodeWifi.h>
const char ArtnetnodeWifi::artnetId[] = ARTNET_ID;
ArtnetnodeWifi::ArtnetnodeWifi()
{
// Initalise DMXOutput array
for (int i = 0; i < DMX_MAX_OUTPUTS; i++) {
DMXOutputs[i][0] = 0xFF;
DMXOutputs[i][1] = 0xFF;
DMXOutputs[i][2] = 0;
}
// Start DMX tick clock
msSinceDMXSend = 0;
// Init DMX buffers
for (int i = 0; i < DMX_MAX_OUTPUTS; i++) {
memset(DMXBuffer[i], 0, sizeof(DMXBuffer[i]));
}
sequence = 1;
physical = 0;
outgoingUniverse = 0;
dmxDataLength = 0;
}
/**
@retval 0 Ok
*/
uint8_t ArtnetnodeWifi::begin(String hostname)
{
byte mac[6];
Udp.begin(ARTNET_PORT);
localIP = WiFi.localIP();
localMask = WiFi.subnetMask();
localBroadcast = IPAddress((uint32_t)localIP | ~(uint32_t)localMask);
WiFi.macAddress(mac);
PollReplyPacket.setMac(mac);
PollReplyPacket.setIP(localIP);
PollReplyPacket.canDHCP(true);
PollReplyPacket.isDHCP(true);
host = hostname;
return 0;
}
void ArtnetnodeWifi::setShortName(const char name[])
{
PollReplyPacket.setShortName(name);
}
void ArtnetnodeWifi::setLongName(const char name[])
{
PollReplyPacket.setLongName(name);
}
void ArtnetnodeWifi::setName(const char name[])
{
PollReplyPacket.setShortName(name);
PollReplyPacket.setLongName(name);
}
void ArtnetnodeWifi::setNumPorts(uint8_t num)
{
PollReplyPacket.setNumPorts(num);
}
void ArtnetnodeWifi::setStartingUniverse(uint16_t startingUniverse)
{
PollReplyPacket.setStartingUniverse(startingUniverse);
}
uint16_t ArtnetnodeWifi::read()
{
uint8_t startcode;
packetSize = Udp.parsePacket();
if (packetSize <= ARTNET_MAX_BUFFER && packetSize > 0) {
Udp.read(artnetPacket, ARTNET_MAX_BUFFER);
// Check that packetID is "Art-Net" else ignore
if (memcmp(artnetPacket, artnetId, sizeof(artnetId)) != 0) {
return 0;
}
opcode = artnetPacket[8] | artnetPacket[9] << 8;
switch (opcode) {
case OpDmx:
return handleDMX(0);
case OpPoll:
return handlePollRequest();
case OpNzs:
startcode = artnetPacket[13];
if (startcode != 0 && startcode != DMX_RDM_STARTCODE) {
return handleDMX(startcode);
}
}
return opcode;
}
return 0;
}
uint16_t ArtnetnodeWifi::makePacket(void)
{
uint16_t len;
uint16_t version;
memcpy(artnetPacket, artnetId, sizeof(artnetId));
opcode = OpDmx;
artnetPacket[8] = opcode;
artnetPacket[9] = opcode >> 8;
version = 14;
artnetPacket[10] = version >> 8;
artnetPacket[11] = version;
artnetPacket[12] = sequence;
sequence++;
if (!sequence) {
sequence = 1;
}
artnetPacket[13] = physical;
artnetPacket[14] = outgoingUniverse;
artnetPacket[15] = outgoingUniverse >> 8;
len = dmxDataLength + (dmxDataLength % 2); // make an even number
artnetPacket[16] = len >> 8;
artnetPacket[17] = len;
return len;
}
int ArtnetnodeWifi::write(void)
{
uint16_t len;
len = makePacket();
Udp.beginPacket(host.c_str(), ARTNET_PORT);
Udp.write(artnetPacket, ARTNET_DMX_START_LOC + len);
return Udp.endPacket();
}
int ArtnetnodeWifi::write(IPAddress ip)
{
uint16_t len;
len = makePacket();
Udp.beginPacket(ip, ARTNET_PORT);
Udp.write(artnetPacket, ARTNET_DMX_START_LOC + len);
return Udp.endPacket();
}
void ArtnetnodeWifi::setByte(uint16_t pos, uint8_t value)
{
if (pos > 512) {
return;
}
artnetPacket[ARTNET_DMX_START_LOC + pos] = value;
}
bool ArtnetnodeWifi::isBroadcast()
{
if (Udp.remoteIP() == localBroadcast){
return true;
} else {
return false;
}
}
uint16_t ArtnetnodeWifi::handleDMX(uint8_t nzs)
{
if (isBroadcast()) {
return 0;
} else {
// Get universe
uint16_t universe = artnetPacket[14] | artnetPacket[15] << 8;
// Get DMX frame length
uint16_t dmxDataLength = artnetPacket[17] | artnetPacket[16] << 8;
// Sequence
uint8_t sequence = artnetPacket[12];
if (artDmxCallback) {
(*artDmxCallback)(universe, dmxDataLength, sequence, artnetPacket + ARTNET_DMX_START_LOC);
}
for(int a = 0; a < DMX_MAX_OUTPUTS; a++){
if(DMXOutputs[a][1] == universe){
for (int i = 0 ; i < DMX_MAX_BUFFER ; i++){
if(i < dmxDataLength){
DMXBuffer[a][i] = artnetPacket[i+ARTNET_DMX_START_LOC];
}
else{
DMXBuffer[a][i] = 0;
}
}
}
}
if (nzs) {
return OpNzs;
} else {
return OpDmx;
}
}
}
uint16_t ArtnetnodeWifi::handlePollRequest()
{
if (1 || isBroadcast()) {
Udp.beginPacket(localBroadcast, ARTNET_PORT);
Udp.write(PollReplyPacket.printPacket(), sizeof(PollReplyPacket.packet));
Udp.endPacket();
return OpPoll;
} else{
return 0;
}
}
void ArtnetnodeWifi::enableDMX()
{
DMXOutputStatus = true;
}
void ArtnetnodeWifi::disableDMX()
{
DMXOutputStatus = false;
}
void ArtnetnodeWifi::enableDMXOutput(uint8_t outputID)
{
DMXOutputs[outputID][2] = 1;
int numEnabled = 0;
for(int i = 0; i < DMX_MAX_OUTPUTS; i++){
if(DMXOutputs[i][2]==1){
if(numEnabled<4){
numEnabled++;
}
}
}
PollReplyPacket.setNumPorts(numEnabled);
PollReplyPacket.setOutputEnabled(outputID);
}
void ArtnetnodeWifi::disableDMXOutput(uint8_t outputID)
{
DMXOutputs[outputID][2] = 0;
int numEnabled = 0;
for(int i = 0; i < DMX_MAX_OUTPUTS; i++){
if(DMXOutputs[i][2]==1){
if(numEnabled<4){
numEnabled++;
}
}
}
PollReplyPacket.setNumPorts(numEnabled);
PollReplyPacket.setOutputDisabled(outputID);
}
uint8_t ArtnetnodeWifi::setDMXOutput(uint8_t outputID, uint8_t uartNum, uint16_t attachedUniverse)
{
// Validate input
if(outputID < DMX_MAX_OUTPUTS && uartNum != 0xFF && attachedUniverse != 0xFF){
DMXOutputs[outputID][0] = uartNum;
DMXOutputs[outputID][1] = attachedUniverse;
DMXOutputs[outputID][2] = 0;
PollReplyPacket.setSwOut(outputID, attachedUniverse);
return 1;
} else {
return 0;
}
}
void ArtnetnodeWifi::tickDMX(uint32_t time)
{
msSinceDMXSend += time;
if(msSinceDMXSend > DMX_MS_BETWEEN_TICKS){
sendDMX();
msSinceDMXSend = 0;
}
}

View File

@ -0,0 +1,151 @@
#ifndef ARTNETNODEWIFI_H
#define ARTNETNODEWIFI_H
/*
Copyright (c) Charles Yarnold charlesyarnold@gmail.com 2015
Copyright (c) 2016 Stephan Ruloff
https://github.com/rstephan
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, under version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <Arduino.h>
#if defined(ARDUINO_ARCH_ESP32) || defined(ESP32)
#include <WiFi.h>
#elif defined(ARDUINO_ARCH_ESP8266)
#include <ESP8266WiFi.h>
#elif defined(ARDUINO_ARCH_SAMD)
#if defined(ARDUINO_SAMD_MKR1000)
#include <WiFi101.h>
#else
#include <WiFiNINA.h>
#endif
#else
#error "Architecture not supported!"
#endif
#include <WiFiUdp.h>
#include "OpCodes.h"
#include "NodeReportCodes.h"
#include "StyleCodes.h"
#include "PriorityCodes.h"
#include "ProtocolSettings.h"
#include "PollReply.h"
class ArtnetnodeWifi
{
public:
ArtnetnodeWifi();
uint8_t begin(String hostname = "");
uint16_t read();
// Node identity
void setShortName(const char name[]);
void setLongName(const char name[]);
void setName(const char name[]);
void setNumPorts(uint8_t num);
void setStartingUniverse(uint16_t startingUniverse);
// Transmit
int write(void);
int write(IPAddress ip);
void setByte(uint16_t pos, uint8_t value);
inline void setUniverse(uint16_t universe)
{
outgoingUniverse = universe;
}
inline void setPhysical(uint8_t port)
{
physical = port;
}
inline void setLength(uint16_t len)
{
dmxDataLength = len;
}
inline void setPortType(uint8_t port, uint8_t type)
{
PollReplyPacket.setPortType(port, type);
}
// DMX controls
void enableDMX();
void disableDMX();
void enableDMXOutput(uint8_t outputID);
void disableDMXOutput(uint8_t outputID);
uint8_t setDMXOutput(uint8_t outputID, uint8_t uartNum, uint16_t attachedUniverse);
// DMX tick
void tickDMX(uint32_t time);
// Return a pointer to the start of the DMX data
inline uint8_t* getDmxFrame(void)
{
return artnetPacket + ARTNET_DMX_START_LOC;
}
inline void setArtDmxCallback(void (*fptr)(uint16_t universe, uint16_t length, uint8_t sequence, uint8_t* data))
{
artDmxCallback = fptr;
}
private:
WiFiUDP Udp;
PollReply PollReplyPacket;
String host;
// Packet handlers
uint16_t handleDMX(uint8_t nzs);
uint16_t handlePollRequest();
// Packet vars
uint8_t artnetPacket[ARTNET_MAX_BUFFER];
uint16_t packetSize;
uint16_t opcode;
uint8_t sequence;
uint8_t physical;
uint16_t outgoingUniverse;
uint16_t dmxDataLength;
IPAddress localIP;
IPAddress localMask;
IPAddress localBroadcast;
// Packet functions
bool isBroadcast();
uint16_t makePacket(void);
// DMX settings
bool DMXOutputStatus;
uint16_t DMXOutputs[DMX_MAX_OUTPUTS][3];
uint8_t DMXBuffer[DMX_MAX_OUTPUTS][DMX_MAX_BUFFER];
uint16_t startingUniverse;
// DMX tick
void sendDMX();
uint8_t* getDmxFrame(uint8_t outputID);
uint8_t msSinceDMXSend;
void (*artDmxCallback)(uint16_t universe, uint16_t length, uint8_t sequence, uint8_t* data);
static const char artnetId[];
};
#endif

View File

@ -0,0 +1,22 @@
#ifndef NODEREPORTCODES_H
#define NODEREPORTCODES_H
// List of hex values and discriptions of Node Report Codes
#define RcDebug 0x0000 // Booted in debug mode (Only used in development)
#define RcPowerOk 0x0001 // Power On Tests successful
#define RcPowerFail 0x0002 // Hardware tests failed at Power On
#define RcSocketWr1 0x0003 // Last UDP from Node failed due to truncated length, Most likely caused by a collision.
#define RcParseFail 0x0004 // Unable to identify last UDP transmission. Check OpCode and \packet length.
#define RcUdpFail 0x0005 // Unable to open Udp Socket in last transmission attempt
#define RcShNameOk 0x0006 // Confirms that Short Name programming via ArtAddress, was successful.
#define RcLoNameOk 0x0007 // Confirms that Long Name programming via ArtAddress, was successful.
#define RcDmxError 0x0008 // DMX512 receive errors detected.
#define RcDmxUdpFull 0x0009 // Ran out of internal DMX transmit buffers.
#define RcDmxRxFull 0x000a // Ran out of internal DMX Rx buffers.
#define RcSwitchErr 0x000b // Rx Universe switches conflict.
#define RcConfigErr 0x000c // Product configuration does not match firmware.
#define RcDmxShort 0x000d // DMX output short detected. See GoodOutput field.
#define RcFirmwareFail 0x000e // Last attempt to upload new firmware failed.
#define RcUserFail 0x000f // User changed switch settings when address locked by remote programming. User changes ignored.
#endif

View File

@ -0,0 +1,136 @@
/*
Copyright (c) Charles Yarnold charlesyarnold@gmail.com 2015
Copyright (c) 2016 Stephan Ruloff
https://github.com/rstephan
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, under version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Class for saving details to and for constructing pollreply packets
#include <PollReply.h>
PollReply::PollReply(){
// Zero out vars
memset(packet.IPAddr, 0, sizeof(packet.IPAddr));
memset(packet.NodeReport, 0, sizeof(packet.NodeReport));
memset(packet.PortTypes, 0, sizeof(packet.PortTypes));
memset(packet.GoodInput, 0, sizeof(packet.GoodInput));
memset(packet.GoodOutput, 0, sizeof(packet.GoodOutput));
memset(packet.SwIn, 0, sizeof(packet.SwIn));
memset(packet.SwOut, 0, sizeof(packet.SwOut));
memset(packet.Filler, 0, sizeof(packet.Filler));
setStartingUniverse(0);
}
void PollReply::setMac(byte mac[]){
packet.Mac[0] = mac[0];
packet.Mac[1] = mac[1];
packet.Mac[2] = mac[2];
packet.Mac[3] = mac[3];
packet.Mac[4] = mac[4];
packet.Mac[5] = mac[5];
}
void PollReply::setIP(IPAddress IP){
packet.IPAddr[0] = IP[0];
packet.IPAddr[1] = IP[1];
packet.IPAddr[2] = IP[2];
packet.IPAddr[3] = IP[3];
}
void PollReply::setShortName(const char name[]){
int shortNameLen = sizeof(packet.ShortName);
memset(packet.ShortName, 0, shortNameLen);
shortNameLen--;
for(int i = 0; i < shortNameLen && name[i] != 0; i++){
packet.ShortName[i] = name[i];
}
}
void PollReply::setLongName(const char name[]){
int longNameLen = sizeof(packet.LongName);
memset(packet.LongName, 0, longNameLen);
longNameLen--;
for(int i = 0; i < longNameLen && name[i] != 0; i++){
packet.LongName[i] = name[i];
}
}
void PollReply::canDHCP(bool can){
if(can){
packet.Status2 = packet.Status2 | 0b00100000;
}
else{
packet.Status2 = packet.Status2 & (~0b00100000);
}
}
void PollReply::isDHCP(bool is){
if(is){
packet.Status2 = packet.Status2 | 0b01000000;
}
else{
packet.Status2 = packet.Status2 & (~0b01000000);
}
}
void PollReply::setNumPorts(uint8_t num){
packet.NumPortsLo = num;
}
void PollReply::setPortType(uint8_t port, uint8_t type)
{
if (port < 4) {
packet.PortTypes[port] = type;
}
}
void PollReply::setSwOut(uint8_t port, uint16_t universe){
if(port < 4){
packet.SwOut[port] = universe & 0b0000000000001111;
}
}
void PollReply::setOutputEnabled(uint8_t port){
if(port < 4){
packet.PortTypes[port] = packet.PortTypes[port] | 0b10000000;
packet.GoodOutput[port] = packet.GoodOutput[port] | 0b10000000;
setSwOut(port, startingUniverse + port);
}
}
void PollReply::setOutputDisabled(uint8_t port){
if(port < 4){
packet.PortTypes[port] = packet.PortTypes[port] & (~0b10000000);
packet.GoodOutput[port] = packet.GoodOutput[port] & (~0b10000000);
setSwOut(port, 0);
}
}
void PollReply::setStartingUniverse(uint16_t startUniverse){
startingUniverse = startUniverse;
packet.NetSwitch = startUniverse >> 8;
packet.SubSwitch = (startUniverse & 0b000000011111111) >> 4;
}
uint8_t* PollReply::printPacket(){
return (uint8_t *)&packet;
}

View File

@ -0,0 +1,188 @@
#ifndef POLLREPLY_H
#define POLLREPLY_H
/*
Copyright (c) Charles Yarnold charlesyarnold@gmail.com 2015
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, under version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Class for saving details to and for constructing pollreply packets
#include <Arduino.h>
#include <WiFiUdp.h>
#include "OpCodes.h"
#include "NodeReportCodes.h"
#include "StyleCodes.h"
#include "PriorityCodes.h"
#include "ProtocolSettings.h"
struct replyPollPacket{
char ID[8] = "Art-Net"; // protocol ID = "Art-Net"
//char ID[8]; // protocol ID = "Art-Net"
uint16_t OpCode = OpPollReply; // == OpPollReply
uint8_t IPAddr[4]; // 0 if not yet configured
uint16_t Port = 0x1936;
uint8_t VersionInfoHi = 0; // The node's current FIRMWARE VERS hi
uint8_t VersionInfoLo = 1; // The node's current FIRMWARE VERS lo
uint8_t NetSwitch = 0; // Bits 14-8 of the 15 bit universe number are encoded into the bottom 7 bits of this field.
// This is used in combination with SubSwitch and Swin[] or Swout[] to produce the full universe address.
uint8_t SubSwitch = 0; // Bits 7-4 of the 15 bit universe number are encoded into the bottom 4 bits of this field.
// This is used in combination with NetSwitch and Swin[] or Swout[] to produce the full universe address.
uint16_t Oem = 0x0190; // Manufacturer code, bit 15 set if
// extended features avail
uint8_t UbeaVersion = 0; // Firmware version of UBEA
uint8_t Status = 0;
// bit 0 = 0 UBEA not present
// bit 0 = 1 UBEA present
// bit 1 = 0 Not capable of RDM (Uni-directional DMX)
// bit 1 = 1 Capable of RDM (Bi-directional DMX)
// bit 2 = 0 Booted from flash (normal boot)
// bit 2 = 1 Booted from ROM (possible error condition)
// bit 3 = Not used
// bit 54 = 00 Universe programming authority unknown
// bit 54 = 01 Universe programming authority set by front panel controls
// bit 54 = 10 Universe programming authority set by network
// bit 76 = 00 Indicators Normal
// bit 76 = 01 Indicators Locate
// bit 76 = 10 Indicators Mute
uint8_t EstaMan[2] = {0, 0}; // ESTA manufacturer id, lo byte
char ShortName[18] = "ElLab Artnetnode\0"; // short name defaults to IP
char LongName[64] = "Electric Laboratory Artnetnode\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"; // long name
char NodeReport[64]; // Text feedback of Node status or errors
// also used for debug info
uint8_t NumPortsHi = 0; // 0
uint8_t NumPortsLo = 0; // 4 If num i/p ports is dif to output ports, return biggest
uint8_t PortTypes[4];
// bit 7 is output
// bit 6 is input
// bits 0-5 are protocol number (0= DMX, 1=MIDI)
// for DMX-Hub ={0xc0,0xc0,0xc0,0xc0};
uint8_t GoodInput[4];
// bit 7 is data received
// bit 6 is data includes test packets
// bit 5 is data includes SIP's
// bit 4 is data includes text
// bit 3 set is input is disabled
// bit 2 is receive errors
// bit 1-0 not used, transmitted as zero.
// Don't test for zero!
uint8_t GoodOutput[4];
// bit 7 is data is transmitting
// bit 6 is data includes test packets
// bit 5 is data includes SIP's
// bit 4 is data includes text
// bit 3 output is merging data.
// bit 2 set if DMX output short detected on power up
// bit 1 set if DMX output merge mode is LTP
// bit 0 not used, transmitted as zero.
uint8_t SwIn[4];
// Bits 3-0 of the 15 bit universe number are encoded into the low nibble
// This is used in combination with SubSwitch and NetSwitch to produce the full universe address.
// THIS IS FOR INPUT - ART-NET or DMX
// NB ON ART-NET II THESE 4 UNIVERSES WILL BE UNICAST TO.
uint8_t SwOut[4];
// Bits 3-0 of the 15 bit universe number are encoded into the low nibble
// This is used in combination with SubSwitch and NetSwitch to produce the full universe address.
// data belongs
// THIS IS FOR OUTPUT - ART-NET or DMX.
// NB ON ART-NET II THESE 4 UNIVERSES WILL BE UNICAST TO.
uint8_t SwVideo = 0;
// Low nibble is the value of the video
// output channel
uint8_t SwMacro = 0;
// Bit 0 is Macro input 1
// Bit 7 is Macro input 8
uint8_t SwRemote = 0;
// Bit 0 is Remote input 1
// Bit 7 is Remote input 8
uint8_t Spare1 = 0; // Spare, currently zero
uint8_t Spare2 = 0; // Spare, currently zero
uint8_t Spare3 = 0; // Spare, currently zero
uint8_t Style = 0; // Set to Style code to describe type of equipment
uint8_t Mac[6]; // Mac Address, zero if info not available
uint8_t BindIp[4]; // If this unit is part of a larger or modular product, this is the IP of the root device.
uint8_t BindIndex = 0; // Set to zero if no binding, otherwise this number represents the order of bound devices. A lower number means closer to root device.
uint8_t Status2 = 0b00000000;
// bit 0 = 0 Node does not support web browser
// bit 0 = 1 Node supports web browser configuration
// bit 1 = 0 Node's IP address is manually configured
// bit 1 = 1 Node's IP address is DHCP configured
// bit 2 = 0 Node is not DHCP capable
// bit 2 = 1 Node is DHCP capable
// bit 2-7 not implemented, transmit as zero
uint8_t Filler[26]; // Filler bytes, currently zero.
};
class PollReply{
public:
PollReply();
void setMac(byte mac[]);
void setIP(IPAddress IP);
void setShortName(const char name[]);
void setLongName(const char name[]);
void setNumPorts(uint8_t num);
void setSwOut(uint8_t id, uint16_t universe);
void setPortType(uint8_t port, uint8_t type);
void setOutputEnabled(uint8_t port);
void setOutputDisabled(uint8_t port);
void canDHCP(bool can);
void isDHCP(bool is);
void setStartingUniverse(uint16_t startUniverse);
uint8_t* printPacket();
struct replyPollPacket packet;
private:
uint16_t startingUniverse;
};
#endif

View File

@ -0,0 +1 @@
#include "artnet.h"

View File

@ -0,0 +1,4 @@
#if !defined(__ARTNET_H__)
#define __ARTNET_H__
#endif // __ARTNET_H__

View File

@ -0,0 +1,128 @@
#if !defined(__ARTNET_OP_CODES_H__)
#define __ARTNET_OP_CODES_H__
/* List of hex values and discriptions of Opcodes */
/* This is an ArtPoll packet, no other data is contained in this UDP packet */
#define OpPoll 0x2000
/* This is an ArtPollReply Packet. It contains device status information. */
#define OpPollReply 0x2100
/* Diagnostics and data logging packet. */
#define OpDiagData 0x2300
/* Used to send text based parameter commands. */
#define OpCommand 0x2400
/* This is an ArtDmx data packet. It contains zero start code DMX512 information for a single
* Universe. */
#define OpOutput 0x5000
/* This is an ArtDmx data packet. It contains zero start code DMX512 information for a single
* Universe. */
#define OpDmx 0x5000
/* This is an ArtNzs data packet. It contains non-zero start code (except RDM) DMX512 information
* for a single Universe. */
#define OpNzs 0x5100
/* This is an ArtAddress packet. It contains remote programming information for a Node. */
#define OpAddress 0x6000
/* This is an ArtInput packet. It contains enable disable data for DMX inputs. */
#define OpInput 0x7000
/* This is an ArtTodRequest packet. It is used to request a Table of Devices (ToD) for RDM
* discovery. */
#define OpTodRequest 0x8000
/* This is an ArtTodData packet. It is used to send a Table of Devices (ToD) for RDM discovery. */
#define OpTodData 0x8100
/* This is an ArtTodControl packet. It is used to send RDM discovery control messages. */
#define OpTodControl 0x8200
/* This is an ArtRdm packet. It is used to send all non discovery RDM messages. */
#define OpRdm 0x8300
/* This is an ArtRdmSub packet. It is used to send compressed, RDM Sub-Device data. */
#define OpRdmSub 0x8400
/* This is an ArtVideoSetup packet. It contains video screen setup information for nodes that
* implement the extended video features. */
#define OpVideoSetup 0xa010
/* This is an ArtVideoPalette packet. It contains colour palette setup information for nodes that
* implement the extended video features. */
#define OpVideoPalette 0xa020
/* This is an ArtVideoData packet. It contains display data for nodes that implement the extended
* video features. */
#define OpVideoData 0xa040
/* This is an ArtMacMaster packet. It is used to program the Nodes MAC address, Oem device type and
* ESTA manufacturer code. This is for factory initialisation of a Node. It is not to be used by
* applications. */
#define OpMacMaster 0xf000
/* This is an ArtMacSlave packet. It is returned by the node to acknowledge receipt of an
* ArtMacMaster packet. */
#define OpMacSlave 0xf100
/* This is an ArtFirmwareMaster packet. It is used to upload new firmware or firmware extensions to
* the Node. */
#define OpFirmwareMaster 0xf200
/* This is an ArtFirmwareReply packet. It is returned by the node to acknowledge receipt of an
* ArtFirmwareMaster packet or ArtFileTnMaster packet. */
#define OpFirmwareReply 0xf300
/* Uploads user file to node. */
#define OpFileTnMaster 0xf400
/* Downloads user file from node. */
#define OpFileFnMaster 0xf500
/* Node acknowledge for downloads. */
#define OpFileFnReply 0xf600
/* This is an ArtIpProg packet. It is used to reprogramme the IP, Mask and Port address of the Node.
*/
#define OpIpProg 0xf800
/* This is an ArtIpProgReply packet. It is returned by the node to acknowledge receipt of an
* ArtIpProg packet. */
#define OpIpProgReply 0xf900
/* This is an ArtMedia packet. It is Unicast by a Media Server and acted upon by a Controller. */
#define OpMedia 0x9000
/* This is an ArtMediaPatch packet. It is Unicast by a Controller and acted upon by a Media Server.
*/
#define OpMediaPatch 0x9100
/* This is an ArtMediaControl packet. It is Unicast by a Controller and acted upon by a Media
* Server. */
#define OpMediaControl 0x9200
/* This is an ArtMediaControlReply packet. It is Unicast by a Media Server and acted upon by a
* Controller. */
#define OpMediaContrlReply 0x9300
/* This is an ArtTimeCode packet. It is used to transport time code over the network. */
#define OpTimeCode 0x9700
/* Used to synchronise real time date and clock */
#define OpTimeSync 0x9800
/* Used to send trigger macros */
#define OpTrigger 0x9900
/* Requests a node's file list */
#define OpDirectory 0x9a00
/* Replies to OpDirectory with file list */
#define OpDirectoryReply 0x9b00
#endif // __ARTNET_OP_CODES_H__

View File

@ -0,0 +1,26 @@
#if !defined(__PROTOCOL_SETTINGS_H__)
#define __PROTOCOL_SETTINGS_H__
// UDP port
#define ARTNET_PORT 6454
// Buffers
#define ARTNET_MAX_BUFFER 530
#define DMX_MAX_BUFFER 512
// Packet constants
#define ARTNET_ID "Art-Net"
#define ARTNET_DMX_START_LOC 18
// Packet confines
#define ARTNET_SHORT_NAME_MAX_LENGTH 17
#define ARTNET_LONG_NAME_MAX_LENGTH 63
// DMX settings
#define DMX_MAX_OUTPUTS 4
#define DMX_MS_BETWEEN_TICKS 25
// RDM
#define DMX_RDM_STARTCODE 0xCC
#endif // __PROTOCOL_SETTINGS_H__

242
RpiLedBars/src/main.c Normal file
View File

@ -0,0 +1,242 @@
#include <ctype.h>
#include <signal.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef _WIN32
#include <Windows.h>
#else
#include <unistd.h>
#endif
#include "rpi_artnet.h"
#include "rpi_pixleds.h"
#include "rpi_smi_defs.h"
#include "rpi_selector.h"
/* Command-line parameters */
bool IsTestMode = false;
int chanLedCount = 0;
/* Global */
MEM_MAP vc_mem;
TXDATA_T *txdata;
void parseCommandLineArgs(int argc, char const *argv[]);
void execute_test_mode();
void execute_artnet_mode();
void execute_autonomous_mode();
void execute_autonomous2_mode();
int main(int argc, char const *argv[]) {
int previousMode = 0;
// setup
parseCommandLineArgs(argc, argv);
signal(SIGINT, terminate);
setup_selector();
// setup led
map_devices();
init_smi(LED_NCHANS > 8 ? SMI_16_BITS : SMI_8_BITS, SMI_TIMING);
map_uncached_mem(&vc_mem, VC_MEM_SIZE);
setup_smi_dma(&vc_mem, TX_BUFF_LEN(chanLedCount), &txdata);
artnet_init();
// loop
while (1) {
int mode = get_selector_position();
if (mode != previousMode) {
#if defined(_DEBUG)
print_selector();
#endif
}
switch (mode) {
case 0:
// mode test
execute_test_mode();
break;
case 1:
// artnet mode
execute_artnet_mode();
break;
case 2:
execute_autonomous_mode();
break;
case 3:
// autonomous mode 2
execute_autonomous2_mode();
break;
default:
printf("error in selector \n");
break;
}
previousMode = mode;
}
// printf("%s %u LED%s per channel, %u channels\n", IsTestMode ? "Testing" : "Setting",
// chanLedCount,
// chanLedCount == 1 ? "" : "s", LED_NCHANS);
// for (size_t colorIndex = 0; colorIndex < 3; ++colorIndex) {
// for (size_t i = 0; i < chanLedCount; ++i) {
// set_color(on_rgbs[colorIndex], &tx_buffer[LED_TX_OSET(i)]);
// }
// #if LED_NCHANS <= 8
// swap_bytes(tx_buffer, TX_BUFF_SIZE(chanLedCount));
// #endif
// memcpy(txdata, tx_buffer, TX_BUFF_SIZE(chanLedCount));
// start_smi(&vc_mem);
// usleep(CHASE_MSEC * 1000);
// sleep(1);
// }
// artnet_init();
// // loops
// if (IsTestMode) {
// while (1) {
// test_leds();
// sleep(3);
// }
// } else {
// while (1) {
// artDmx_t *artDmx;
// if (artnet_read(&artDmx) == OpDmx) {
// uint16_t dmxLength = (artDmx->lengthHi << 8) | artDmx->lengthLo;
// unsigned int ledCountInFrame = dmxLength / 3;
// uint16_t maxBound = ledCountInFrame < chanLedCount ? ledCountInFrame : chanLedCount;
// unsigned int universe = artDmx->subUni & (LED_NCHANS - 1);
// for (size_t i = 0; i < maxBound; ++i) {
// uint8_t *rgb = artDmx->data + (i * 3);
// rgb_data[i][universe] = (rgb[0] << 16) | (rgb[1] << 8) | rgb[2];
// rgb_txdata(rgb_data[i], &tx_buffer[LED_TX_OSET(i)]);
// }
// #if LED_NCHANS <= 8
// swap_bytes(tx_buffer, TX_BUFF_SIZE(chanLedCount));
// #endif
// memcpy(txdata, tx_buffer, TX_BUFF_SIZE(chanLedCount));
// // enable_dma(DMA_CHAN);
// start_smi(&vc_mem);
// // usleep(10);
// // while (dma_active(DMA_CHAN))
// // usleep(10);
// }
// }
// }
// terminate(0);
}
void parseCommandLineArgs(int argc, char const *argv[]) {
int args = 0;
while (argc > ++args) // Process command-line args
{
if (argv[args][0] == '-') {
switch (toupper(argv[args][1])) {
case 'N': // -N: number of LEDs per channel
if (args >= argc - 1)
fprintf(stderr, "Error: no numeric value\n");
else
chanLedCount = atoi(argv[++args]);
break;
case 'T': // -T: test mode
IsTestMode = true;
break;
default: // Otherwise error
printf("Unrecognised option '%c'\n", argv[args][1]);
printf("Options:\n"
" -n num number of LEDs per channel\n"
" -t Test mode (flash LEDs)\n");
exit(1);
}
}
}
}
// Pointer to uncached Tx data buffer
TXDATA_T tx_buffer[TX_BUFF_LEN(CHAN_MAXLEDS)]; // Tx buffer for assembling data
void execute_test_mode() {
// RGB values for test mode (1 value for each of 16 channels)
uint32_t on_rgbs[] = {0xef0000, 0x00ef00, 0x0000ef, 0xefef00, 0xef00ef, 0x00efef, 0xefefef};
uint32_t off_rgbs = 0x000000;
static int i = 0, offset = 0, ledIndex = 0;
if (ledIndex < chanLedCount) {
set_color(ledIndex <= offset % chanLedCount ? on_rgbs[i] : off_rgbs,
&tx_buffer[LED_TX_OSET(ledIndex)]);
++ledIndex;
} else {
ledIndex = 0;
#if LED_NCHANS <= 8
swap_bytes(tx_buffer, TX_BUFF_SIZE(chanLedCount));
#endif
memcpy(txdata, tx_buffer, TX_BUFF_SIZE(chanLedCount));
start_smi(&vc_mem);
usleep(CHASE_MSEC * 1000);
if (offset < chanLedCount) {
++offset;
} else {
offset = 0;
if (i < 7) {
++i;
} else {
i = 0;
}
}
}
}
void execute_artnet_mode() {
artDmx_t *artDmx;
// RGB data
int rgb_data[CHAN_MAXLEDS][LED_NCHANS];
if (artnet_read(&artDmx) == OpDmx) {
uint16_t dmxLength = (artDmx->lengthHi << 8) | artDmx->lengthLo;
unsigned int ledCountInFrame = dmxLength / 3;
uint16_t maxBound = ledCountInFrame < chanLedCount ? ledCountInFrame : chanLedCount;
unsigned int universe = artDmx->subUni & (LED_NCHANS - 1);
for (size_t i = 0; i < maxBound; ++i) {
uint8_t *rgb = artDmx->data + (i * 3);
rgb_data[i][universe] = (rgb[0] << 16) | (rgb[1] << 8) | rgb[2];
rgb_txdata(rgb_data[i], &tx_buffer[LED_TX_OSET(i)]);
}
#if LED_NCHANS <= 8
swap_bytes(tx_buffer, TX_BUFF_SIZE(chanLedCount));
#endif
memcpy(txdata, tx_buffer, TX_BUFF_SIZE(chanLedCount));
enable_dma(DMA_CHAN);
start_smi(&vc_mem);
usleep(10);
while (dma_active(DMA_CHAN))
usleep(10);
}
}
void execute_autonomous_mode() {}
void execute_autonomous2_mode() {}

View File

@ -30,6 +30,8 @@
// v0.11 JPB 29/9/20 Added enable_dma before transfer (in case still active) // v0.11 JPB 29/9/20 Added enable_dma before transfer (in case still active)
// Corrected DMA nsamp value (was byte count) // Corrected DMA nsamp value (was byte count)
#include "rpi_pixleds.h"
#include <arpa/inet.h> #include <arpa/inet.h>
#include <ctype.h> #include <ctype.h>
#include <netinet/in.h> #include <netinet/in.h>
@ -41,37 +43,8 @@
#include <unistd.h> #include <unistd.h>
#include "rpi_artnet.h" #include "rpi_artnet.h"
#include "rpi_dma_utils.h"
#include "rpi_smi_defs.h" #include "rpi_smi_defs.h"
#if PHYS_REG_BASE == PI_4_REG_BASE // Timings for RPi v4 (1.5 GHz)
#define SMI_TIMING 10, 15, 30, 15 // 400 ns cycle time
#else // Timings for RPi v0-3 (1 GHz)
#define SMI_TIMING 10, 10, 20, 10 // 400 ns cycle time
#endif
#define TX_TEST 0 // If non-zero, use dummy Tx data
#define LED_D0_PIN 8 // GPIO pin for D0 output
#define LED_NCHANS 8 // Number of LED channels (8 or 16)
#define LED_NBITS 24 // Number of data bits per LED
#define LED_PREBITS 4 // Number of zero bits before LED data
#define LED_POSTBITS 4 // Number of zero bits after LED data
#define BIT_NPULSES 3 // Number of O/P pulses per LED bit
#define CHAN_MAXLEDS 50 // Maximum number of LEDs per channel
#define CHASE_MSEC 100 // Delay time for chaser light test
#define REQUEST_THRESH 2 // DMA request threshold
#define DMA_CHAN 10 // DMA channel to use
// Length of data for 1 row (1 LED on each channel)
#define LED_DLEN (LED_NBITS * BIT_NPULSES)
// Transmit data type, 8 or 16 bits
#if LED_NCHANS > 8
#define TXDATA_T uint16_t
#else
#define TXDATA_T uint8_t
#endif
// Structures for mapped I/O devices, and non-volatile memory // Structures for mapped I/O devices, and non-volatile memory
extern MEM_MAP gpio_regs, dma_regs; extern MEM_MAP gpio_regs, dma_regs;
MEM_MAP vc_mem, clk_regs, smi_regs; MEM_MAP vc_mem, clk_regs, smi_regs;
@ -88,132 +61,110 @@ volatile SMI_DCS_REG *smi_dcs;
volatile SMI_DCA_REG *smi_dca; volatile SMI_DCA_REG *smi_dca;
volatile SMI_DCD_REG *smi_dcd; volatile SMI_DCD_REG *smi_dcd;
// Ofset into Tx data buffer, given LED number in chan
#define LED_TX_OSET(n) (LED_PREBITS + (LED_DLEN * (n)))
// Size of data buffers & NV memory, given number of LEDs per chan
#define TX_BUFF_LEN(n) (LED_TX_OSET(n) + LED_POSTBITS)
#define TX_BUFF_SIZE(n) (TX_BUFF_LEN(n) * sizeof(TXDATA_T))
#define VC_MEM_SIZE (PAGE_SIZE + TX_BUFF_SIZE(CHAN_MAXLEDS))
// RGB values for test mode (1 value for each of 16 channels) // RGB values for test mode (1 value for each of 16 channels)
int on_rgbs[16] = {0xff0000, 0x00ff00, 0x0000ff, 0xffffff, 0xff4040, 0x40ff40, 0x4040ff, 0x404040, // uint32_t on_rgbs[] = {0xef0000, 0x00ef00, 0x0000ef, 0xefef00, 0xef00ef, 0x00efef, 0xefefef};
0xff0000, 0x00ff00, 0x0000ff, 0xffffff, 0xff4040, 0x40ff40, 0x4040ff, 0x404040}; // uint32_t off_rgbs = 0x000000;
int off_rgbs[16];
#if TX_TEST // TXDATA_T *txdata; // Pointer to uncached Tx data buffer
// Data for simple transmission test // TXDATA_T tx_buffer[TX_BUFF_LEN(CHAN_MAXLEDS)]; // Tx buffer for assembling data
TXDATA_T tx_test_data[] = {1, 2, 3, 4, 5, 6, 7, 0}; // int testmode, chan_ledcount = 1; // Command-line parameters
#endif
TXDATA_T *txdata; // Pointer to uncached Tx data buffer
TXDATA_T tx_buffer[TX_BUFF_LEN(CHAN_MAXLEDS)]; // Tx buffer for assembling data
int testmode, chan_ledcount = 1; // Command-line parameters
int rgb_data[CHAN_MAXLEDS][LED_NCHANS]; // RGB data int rgb_data[CHAN_MAXLEDS][LED_NCHANS]; // RGB data
int chan_num; // Current channel for data I/P int chan_num;
void rgb_txdata(int *rgbs, TXDATA_T *txd); // Current channel for data I/P
int str_rgb(char *s, int rgbs[][LED_NCHANS], int chan);
void swap_bytes(void *data, int len);
int hexdig(char c);
void map_devices(void);
void fail(char *s);
void terminate(int sig);
void init_smi(int width, int ns, int setup, int hold, int strobe);
void setup_smi_dma(MEM_MAP *mp, int nsamp);
void start_smi(MEM_MAP *mp);
int main(int argc, char *argv[]) { // int main(int argc, char *argv[]) {
// setup // // setup
int args = 0, n, oset = 0; // int args = 0, n;
memset(off_rgbs, 0, sizeof(int) * 16);
while (argc > ++args) // Process command-line args // while (argc > ++args) // Process command-line args
{ // {
if (argv[args][0] == '-') { // if (argv[args][0] == '-') {
switch (toupper(argv[args][1])) { // switch (toupper(argv[args][1])) {
case 'N': // -N: number of LEDs per channel // case 'N': // -N: number of LEDs per channel
if (args >= argc - 1) // if (args >= argc - 1)
fprintf(stderr, "Error: no numeric value\n"); // fprintf(stderr, "Error: no numeric value\n");
else // else
chan_ledcount = atoi(argv[++args]); // chan_ledcount = atoi(argv[++args]);
break; // break;
case 'T': // -T: test mode // case 'T': // -T: test mode
testmode = 1; // testmode = 1;
break; // break;
default: // Otherwise error // default: // Otherwise error
printf("Unrecognised option '%c'\n", argv[args][1]); // printf("Unrecognised option '%c'\n", argv[args][1]);
printf("Options:\n" // printf("Options:\n"
" -n num number of LEDs per channel\n" // " -n num number of LEDs per channel\n"
" -t Test mode (flash LEDs)\n"); // " -t Test mode (flash LEDs)\n");
return (1); // return (1);
} // }
} else if (chan_num < LED_NCHANS && hexdig(argv[args][0]) >= 0 && // } else if (chan_num < LED_NCHANS && hexdig(argv[args][0]) >= 0 &&
(n = str_rgb(argv[args], rgb_data, chan_num)) > 0) { // (n = str_rgb(argv[args], rgb_data, chan_num)) > 0) {
chan_ledcount = n > chan_ledcount ? n : chan_ledcount; // chan_ledcount = n > chan_ledcount ? n : chan_ledcount;
chan_num++; // chan_num++;
} // }
} // }
signal(SIGINT, terminate); // signal(SIGINT, terminate);
map_devices(); // map_devices();
init_smi(LED_NCHANS > 8 ? SMI_16_BITS : SMI_8_BITS, SMI_TIMING); // init_smi(LED_NCHANS > 8 ? SMI_16_BITS : SMI_8_BITS, SMI_TIMING);
map_uncached_mem(&vc_mem, VC_MEM_SIZE); // map_uncached_mem(&vc_mem, VC_MEM_SIZE);
setup_smi_dma(&vc_mem, TX_BUFF_LEN(chan_ledcount)); // setup_smi_dma(&vc_mem, TX_BUFF_LEN(chan_ledcount));
printf("%s %u LED%s per channel, %u channels\n", testmode ? "Testing" : "Setting", chan_ledcount, // printf("%s %u LED%s per channel, %u channels\n", testmode ? "Testing" : "Setting",
chan_ledcount == 1 ? "" : "s", LED_NCHANS); // chan_ledcount,
// chan_ledcount == 1 ? "" : "s", LED_NCHANS);
memcpy(txdata, tx_buffer, TX_BUFF_SIZE(chan_ledcount)); // for (size_t colorIndex = 0; colorIndex < 3; ++colorIndex) {
start_smi(&vc_mem); // for (size_t i = 0; i < chan_ledcount; ++i) {
artnet_init(); // set_color(on_rgbs[colorIndex], &tx_buffer[LED_TX_OSET(i)]);
// }
// loops // #if LED_NCHANS <= 8
if (testmode) { // swap_bytes(tx_buffer, TX_BUFF_SIZE(chan_ledcount));
while (1) { // #endif
if (chan_ledcount < 2)
rgb_txdata(oset & 1 ? off_rgbs : on_rgbs, tx_buffer);
else {
for (n = 0; n < chan_ledcount; n++) {
rgb_txdata(n == oset % chan_ledcount ? on_rgbs : off_rgbs, &tx_buffer[LED_TX_OSET(n)]);
}
}
oset++;
#if LED_NCHANS <= 8
swap_bytes(tx_buffer, TX_BUFF_SIZE(chan_ledcount));
#endif
memcpy(txdata, tx_buffer, TX_BUFF_SIZE(chan_ledcount));
start_smi(&vc_mem);
usleep(CHASE_MSEC * 1000);
}
} else {
while (1) {
artDmx_t *artDmx;
if (artnet_read(&artDmx) == OpDmx) {
uint16_t dmxLength = (artDmx->lengthHi << 8) | artDmx->lengthLo;
unsigned int ledCountInFrame = dmxLength / 3;
uint16_t maxBound = ledCountInFrame < chan_ledcount ? ledCountInFrame : chan_ledcount;
unsigned int universe = artDmx->subUni & (LED_NCHANS - 1);
for (size_t i = 0; i < maxBound; ++i) {
uint8_t *rgb = artDmx->data + (i * 3);
rgb_data[i][universe] = (rgb[0] << 16) | (rgb[1] << 8) | rgb[2];
rgb_txdata(rgb_data[i], &tx_buffer[LED_TX_OSET(i)]);
}
#if LED_NCHANS <= 8 // memcpy(txdata, tx_buffer, TX_BUFF_SIZE(chan_ledcount));
swap_bytes(tx_buffer, TX_BUFF_SIZE(chan_ledcount)); // start_smi(&vc_mem);
#endif // usleep(CHASE_MSEC * 1000);
// sleep(1);
// }
memcpy(txdata, tx_buffer, TX_BUFF_SIZE(chan_ledcount)); // artnet_init();
// enable_dma(DMA_CHAN);
start_smi(&vc_mem); // // loops
// usleep(10); // if (testmode) {
// while (dma_active(DMA_CHAN)) // while (1) {
// usleep(10); // test_leds();
} // sleep(3);
} // }
} // } else {
terminate(0); // while (1) {
} // artDmx_t *artDmx;
// if (artnet_read(&artDmx) == OpDmx) {
// uint16_t dmxLength = (artDmx->lengthHi << 8) | artDmx->lengthLo;
// unsigned int ledCountInFrame = dmxLength / 3;
// uint16_t maxBound = ledCountInFrame < chan_ledcount ? ledCountInFrame :
// chan_ledcount; unsigned int universe = artDmx->subUni & (LED_NCHANS - 1); for (size_t
// i = 0; i < maxBound; ++i) {
// uint8_t *rgb = artDmx->data + (i * 3);
// rgb_data[i][universe] = (rgb[0] << 16) | (rgb[1] << 8) | rgb[2];
// rgb_txdata(rgb_data[i], &tx_buffer[LED_TX_OSET(i)]);
// }
// #if LED_NCHANS <= 8
// swap_bytes(tx_buffer, TX_BUFF_SIZE(chan_ledcount));
// #endif
// memcpy(txdata, tx_buffer, TX_BUFF_SIZE(chan_ledcount));
// // enable_dma(DMA_CHAN);
// start_smi(&vc_mem);
// // usleep(10);
// // while (dma_active(DMA_CHAN))
// // usleep(10);
// }
// }
// }
// terminate(0);
// }
// Convert RGB text string into integer data, for given channel // Convert RGB text string into integer data, for given channel
// Return number of data points for this channel // Return number of data points for this channel
@ -227,6 +178,28 @@ int str_rgb(char *s, int rgbs[][LED_NCHANS], int chan) {
} }
return (i); return (i);
} }
// Set Tx data for 8 or 16 chans, 1 LED per chan, given 1 RGB val per chan
// Logic 1 is 0.8us high, 0.4 us low, logic 0 is 0.4us high, 0.8us low
void set_color(uint32_t rgb, TXDATA_T *txd) {
int msk;
// For each bit of the 24-bit RGB values..
for (size_t n = 0; n < LED_NBITS; n++) {
// Mask to convert RGB to GRB, M.S bit first
msk = n == 0 ? 0x800000 : n == 8 ? 0x8000 : n == 16 ? 0x80 : msk >> 1;
// 1st byte or word is a high pulse on all lines
txd[0] = (TXDATA_T)0xffff;
// 2nd has high or low bits from data
// 3rd is a low pulse
txd[1] = txd[2] = 0;
if (rgb & msk) {
txd[1] = (TXDATA_T)0xffff;
}
txd += BIT_NPULSES;
}
}
// Set Tx data for 8 or 16 chans, 1 LED per chan, given 1 RGB val per chan // Set Tx data for 8 or 16 chans, 1 LED per chan, given 1 RGB val per chan
// Logic 1 is 0.8us high, 0.4 us low, logic 0 is 0.4us high, 0.8us low // Logic 1 is 0.8us high, 0.4 us low, logic 0 is 0.4us high, 0.8us low
void rgb_txdata(int *rgbs, TXDATA_T *txd) { void rgb_txdata(int *rgbs, TXDATA_T *txd) {
@ -235,7 +208,7 @@ void rgb_txdata(int *rgbs, TXDATA_T *txd) {
// For each bit of the 24-bit RGB values.. // For each bit of the 24-bit RGB values..
for (n = 0; n < LED_NBITS; n++) { for (n = 0; n < LED_NBITS; n++) {
// Mask to convert RGB to GRB, M.S bit first // Mask to convert RGB to GRB, M.S bit first
msk = n == 0 ? 0x8000 : n == 8 ? 0x800000 : n == 16 ? 0x80 : msk >> 1; msk = n == 0 ? 0x800000 : n == 8 ? 0x8000 : n == 16 ? 0x80 : msk >> 1;
// 1st byte or word is a high pulse on all lines // 1st byte or word is a high pulse on all lines
txd[0] = (TXDATA_T)0xffff; txd[0] = (TXDATA_T)0xffff;
// 2nd has high or low bits from data // 2nd has high or low bits from data
@ -284,16 +257,7 @@ void fail(char *s) {
// Free memory segments and exit // Free memory segments and exit
void terminate(int sig) { void terminate(int sig) {
int i; int i;
printf("Closing\n"); printf("Closing\n");
for (size_t i = 0; i < chan_ledcount; ++i) {
rgb_txdata(off_rgbs, &tx_buffer[LED_TX_OSET(i)]);
}
swap_bytes(tx_buffer, TX_BUFF_SIZE(chan_ledcount));
memcpy(txdata, tx_buffer, TX_BUFF_SIZE(chan_ledcount));
start_smi(&vc_mem);
sleep(1);
if (gpio_regs.virt) { if (gpio_regs.virt) {
for (i = 0; i < LED_NCHANS; i++) for (i = 0; i < LED_NCHANS; i++)
gpio_mode(LED_D0_PIN + i, GPIO_IN); gpio_mode(LED_D0_PIN + i, GPIO_IN);
@ -352,10 +316,10 @@ void init_smi(int width, int ns, int setup, int strobe, int hold) {
} }
// Set up SMI transfers using DMA // Set up SMI transfers using DMA
void setup_smi_dma(MEM_MAP *mp, int nsamp) { void setup_smi_dma(MEM_MAP *mp, int nsamp, TXDATA_T **txdata) {
DMA_CB *cbs = mp->virt; DMA_CB *cbs = mp->virt;
txdata = (TXDATA_T *)(cbs + 1); *txdata = (TXDATA_T *)(cbs + 1);
smi_dmc->dmaen = 1; smi_dmc->dmaen = 1;
smi_cs->enable = 1; smi_cs->enable = 1;
smi_cs->clear = 1; smi_cs->clear = 1;
@ -365,7 +329,7 @@ void setup_smi_dma(MEM_MAP *mp, int nsamp) {
enable_dma(DMA_CHAN); enable_dma(DMA_CHAN);
cbs[0].ti = DMA_DEST_DREQ | (DMA_SMI_DREQ << 16) | DMA_CB_SRCE_INC | DMA_WAIT_RESP; cbs[0].ti = DMA_DEST_DREQ | (DMA_SMI_DREQ << 16) | DMA_CB_SRCE_INC | DMA_WAIT_RESP;
cbs[0].tfr_len = nsamp; cbs[0].tfr_len = nsamp;
cbs[0].srce_ad = MEM_BUS_ADDR(mp, txdata); cbs[0].srce_ad = MEM_BUS_ADDR(mp, *txdata);
cbs[0].dest_ad = REG_BUS_ADDR(smi_regs, SMI_D); cbs[0].dest_ad = REG_BUS_ADDR(smi_regs, SMI_D);
} }

View File

@ -0,0 +1,62 @@
#if !defined(__RPI_PIXLEDS_H__)
#define __RPI_PIXLEDS_H__
#include <stdint.h>
#include "rpi_dma_utils.h"
#if PHYS_REG_BASE == PI_4_REG_BASE // Timings for RPi v4 (1.5 GHz)
#define SMI_TIMING 10, 15, 30, 15 // 400 ns cycle time
#else // Timings for RPi v0-3 (1 GHz)
#define SMI_TIMING 10, 10, 20, 10 // 400 ns cycle time
#endif
#define TX_TEST 0 // If non-zero, use dummy Tx data
#define LED_D0_PIN 8 // GPIO pin for D0 output
#define LED_NCHANS 8 // Number of LED channels (8 or 16)
#define LED_NBITS 24 // Number of data bits per LED
#define LED_PREBITS 4 // Number of zero bits before LED data
#define LED_POSTBITS 4 // Number of zero bits after LED data
#define BIT_NPULSES 3 // Number of O/P pulses per LED bit
#define CHAN_MAXLEDS 6 * 60 // Maximum number of LEDs per channel
#define CHASE_MSEC 20 // Delay time for chaser light test
#define REQUEST_THRESH 2 // DMA request threshold
#define DMA_CHAN 10 // DMA channel to use
// Length of data for 1 row (1 LED on each channel)
#define LED_DLEN (LED_NBITS * BIT_NPULSES)
// Transmit data type, 8 or 16 bits
#if LED_NCHANS > 8
#define TXDATA_T uint16_t
#else
#define TXDATA_T uint8_t
#endif
// Ofset into Tx data buffer, given LED number in chan
#define LED_TX_OSET(n) (LED_PREBITS + (LED_DLEN * (n)))
// Size of data buffers & NV memory, given number of LEDs per chan
#define TX_BUFF_LEN(n) (LED_TX_OSET(n) + LED_POSTBITS)
#define TX_BUFF_SIZE(n) (TX_BUFF_LEN(n) * sizeof(TXDATA_T))
#define VC_MEM_SIZE (PAGE_SIZE + TX_BUFF_SIZE(CHAN_MAXLEDS))
#if TX_TEST
// Data for simple transmission test
TXDATA_T tx_test_data[] = {1, 2, 3, 4, 5, 6, 7, 0};
#endif
void test_leds();
int str_rgb(char *s, int rgbs[][LED_NCHANS], int chan);
void set_color(uint32_t rgb, TXDATA_T *txd);
void rgb_txdata(int *rgbs, TXDATA_T *txd);
void swap_bytes(void *data, int len);
int hexdig(char c);
void map_devices(void);
void fail(char *s);
void terminate(int sig);
void init_smi(int width, int ns, int setup, int hold, int strobe);
void setup_smi_dma(MEM_MAP *mp, int nsamp, TXDATA_T **txdata);
void start_smi(MEM_MAP *mp);
#endif // __RPI_PIXLEDS_H__

View File

@ -0,0 +1,32 @@
#include <stdio.h>
#include <stdlib.h>
#include <wiringPi.h>
unsigned const selectorPinNumber = 4;
int selectorPins[4] = {5, 6, 26, 27};
void setup_selector() {
wiringPiSetupGpio();
for (size_t i = 0; i < selectorPinNumber; ++i) {
pinMode(selectorPins[i], INPUT);
pullUpDnControl(selectorPins[i], PUD_DOWN);
}
}
int get_selector_position() {
for (size_t i = 0; i < selectorPinNumber; ++i) {
if (digitalRead(selectorPins[i])) {
return i;
}
}
return -1;
}
void print_selector() {
char modeStr[] = "0 | 0 | 0 | 0 \n";
for (size_t i = 0; i < selectorPinNumber; ++i) {
modeStr[i * 4] = digitalRead(selectorPins[i]) ? '1' : '0';
}
printf(modeStr);
}

View File

@ -0,0 +1,10 @@
#if !defined(__RPI_SELECTOR_H__)
#define __RPI_SELECTOR_H__
void setup_selector();
int get_selector_position();
void print_selector();
#endif /* __RPI_SELECTOR_H__ */

View File

@ -0,0 +1,37 @@
#include "VitualMemory.hpp"
#include <stdexcept>
#include "utils.h"
#include <fcntl.h>
// #include <sys/ioctl.h>
#include <stdint.h>
#include <sys/mman.h>
#include <unistd.h>
VitualMemory::VitualMemory(void *addr, int size) {
int fd;
roundSize = PAGE_ROUNDUP(size);
if ((fd = open("/dev/mem", O_RDWR | O_SYNC | O_CLOEXEC)) < 0) {
throw std::runtime_error("Error: can't open /dev/mem, run using sudo");
}
mem = mmap(0, roundSize, PROT_WRITE | PROT_READ, MAP_SHARED, fd, (uint32_t)addr);
close(fd);
#if _DEBUG
printf("Map %p -> %p\n", (void *)addr, mem);
#endif // _DEBUG
if (mem == MAP_FAILED) {
throw std::runtime_error("Error: can't map memory");
}
}
VitualMemory::~VitualMemory() {
if (mem) {
munmap(mem, roundSize);
}
}

View File

@ -0,0 +1,14 @@
#if !defined(__VIRTUAL_MEMORY_H__)
#define __VIRTUAL_MEMORY_H__
class VitualMemory {
public:
VitualMemory(void *addr, int size);
~VitualMemory();
private:
int roundSize;
void *mem;
};
#endif // __VIRTUAL_MEMORY_H__

View File

@ -0,0 +1,4 @@
// Size of memory page
#define PAGE_SIZE 0x1000
// Round up to nearest page
#define PAGE_ROUNDUP(n) ((n) % PAGE_SIZE == 0 ? (n) : ((n) + PAGE_SIZE) & ~(PAGE_SIZE - 1))

View File

@ -0,0 +1,8 @@
int main(int argc, char const *argv[])
{
return 0;
}

View File

@ -0,0 +1,15 @@
#if !defined(__RPI_PIXLEDS_H__)
#define __RPI_PIXLEDS_H__
void rgb_txdata(int *rgbs, TXDATA_T *txd);
int str_rgb(char *s, int rgbs[][LED_NCHANS], int chan);
void swap_bytes(void *data, int len);
int hexdig(char c);
void map_devices(void);
void fail(char *s);
void terminate(int sig);
void init_smi(int width, int ns, int setup, int hold, int strobe);
void setup_smi_dma(MEM_MAP *mp, int nsamp, TXDATA_T *txdata);
void start_smi(MEM_MAP *mp);
#endif // __RPI_PIXLEDS_H__